
An older pickup winding machine, which requires the human operator to use an apparatus to guide the wire.
Beware of technical marketing claims and misinformation when choosing your pickups.
There is no question that magnetic pickups are at the core of our electric instruments, with some players and manufacturers going as far as saying they are all that matters. So, it's no wonder that pickups are surrounded by a lot of myths. Some manufacturers make bold claims and share flowery descriptions of what to expect, while at the same time failing to deliver at least some facts and meaningful data. The fact that invisible, mystical magnetism is involved doesn't help. But while it's easy to bash them for failing to deliver hard facts, we also have to ask ourselves whether we could understand this information and how far we're willing to dig into the technical basics.
Choosing pickups isn't easy! Not just because of the sheer number of models, but because most of us lack an understanding of detailed electrical and magnetic values, which most manufacturers don't provide anyway. Most pickup descriptions just share DC resistance and magnet material, which is what customers tend to discuss instead of learning to read wirings, a pickup's frequency response curve, or the interplay of different electrical values.
Luthiery schools teach far more about inlays and bindings instead of the basic physics behind the electronic circuits students will have to deal with. Not everybody has to be able to repair tube amps and electronics, but it would be helpful to know how to discuss the tonal influence of magnetic materials as well as how to handle a simple equation or an equivalent diagram of a resonant circuit.
Of course, terms like "resistance" and "capacitance" are familiar, but once a current in a magnetic field gets into motion, things will indubitably aggravate. Terms like impedance, inductance, resonant frequency, ohmic load, and eddy current don't make it less confusing, nor does the interplay between all those things. This opens the door for marketing claims and misinformation.
Choosing pickups isn't easy! Not just because of the sheer number of models, but because most of us lack an understanding of detailed electrical and magnetic values, which most manufacturers don't provide anyway.
Hand or machine?
We all have some legendary tones we're searching for, and there are lots of pickup manufacturers claiming to do exact replicas of our heroes' tools. But how close can they get?
You might guess it's sufficient to know the exact ingredients, like magnets, bobbins, wire, and the count of windings. Good luck finding the correct magnets—alnico can vary extremely, even among what is supposed to be the same type of alloy. Here, differences in magnetic force aren't the problem, but eddy currents (losses) are. It might be easier to get the right wire, since production consistency has improved a lot. And finally, there is the count of windings.
According to some manufacturers, this is not where it ends. In the early days of our instrument, pickups were wound by hand. They did have a motor to rotate the bobbin, but there was always a person standing next to the machine, guiding the wire by hand, which would lead to less consistent or loose windings, while an automated machine keeps tension and density constant. Handwound pickups are also called scatterwound, as the wires often crisscross diagonally over the bobbin. The theoretical result would be a slightly higher resistance, since more wire is used, and, thus, a minimally lower inductance and capacitance, but the differences are rather marginal since the lower density can lead to parts of the wiring being farther away from the stronger field. Practically, all these differences are hard to measure, and there should not be an inherent difference between handwound and machine-wound pickups.
Does zig-zag winding cause a different tone?
Fig. 1 — The right-hand rule—a common physics mnemonic for understanding the location of axes in a three-dimensional shape—for the Lorentz force (F) describes the force on a current-carrying wire (I=current) in a magnetic field (B) and shows the dependance of the angle (∝) between the two. (For the super nerd, also see Maxwell's equations and Faraday's law of induction.)
Courtesy of Wikimedia
Magnetic pickups work thanks to the changes in the magnetic field and flow via induction in the wires. Remember the right-hand rule of the Lorentz force from school physics [Fig. 1]? The main point here is the direct proportion of induction and right-angled orientation to the magnetic field gets smaller as a function of said angle 𝜶. In short: A diagonal wire has a longer run through the magnetic field but experiences the same induction signal as a straight one for an identical length of the magnetic field. The wire is longer and can have a higher ohmic resistance, but due to the pickup's long length and small depth, this difference is slight. It's therefore highly unlikely that the zig-zag pattern is causing a tonal change, rather than the unknown variance of eddy currents within the magnets. And it's even more unlikely that any of these patterns can be measured from outside a pickup, let alone distinguished!
So, we should be skeptical about the claims we read from manufacturers, whether it's from a company that claims it can identify 728 scatter patterns by measuring an installed pickup by using proprietary tools—as one pickup maker does—or whatever technical information it is that they won't share and we won't necessarily understand.
Can they make good pickups? Of course! Exact replicas? You judge.
- How Do You Make a Cheetah Purr? - Premier Guitar ›
- Why Low-Impedance Pickups Could Benefit Your Bass Tone ... ›
- DIY: No-Brainer Mods! - Premier Guitar ›
Do you overuse vibrato? Could you survive without it?
Vibrato is a powerful tool, but it should be used intentionally. Different players have different styles—B.B. King’s shake, Clapton’s subtle touch—but the key is control. Tom Butwin suggests a few exercises to build awareness, tone, and touch.
The goal? Find a balance—don’t overdo it, but don’t avoid it completely. Try it out and see how it changes your playing!
The author dials in one of his 20-watt Sonzera amps, with an extension cabinet.
Knowing how guitar amplifiers were developed and have evolved is important to understanding why they sound the way they do when you’re plugged in.
Let’s talk about guitar amp history. I think it’s important for guitar players to have a general overview of amplifiers, so the sound makes more sense when they plug in. As far as I can figure out, guitar amps originally came from radios—although I’ve never had the opportunity to interview the inventors of the original amps. Early tube amps looked like radio boxes, and once there was an AM signal, it needed to be amplified through a speaker so you could hear it. I’m reasonably certain that other people know more about this than I do.
For me, the story of guitar amps picks up with early Fenders and Marshalls. If you look at the schematics, amplifier input, and tone control layout of an early tweed Fender Bassman, it’s clear that’s where the original Marshall JTM45 amps came from. Also, I’ve heard secondhand that the early Marshall cabinets were 8x12s, and the roadies requested that Marshall cut them in half so they became 4x12s. Similarly, 8x10 SVT cabinets were cut in half to make the now-industry-standard 4x10 bass cabinets. Our amp designer Doug Sewell and I understand that, for the early Fender amps we love, the design directed the guitar signal into half a tube, into a tone stack, into another half a tube, and the reverb would join it with another half a tube, and then there would be a phase splitter and output tubes and a transformer. (All 12AX7 tubes are really two tubes in one, so when I say a half-tube, I’m saying we’re using only the first half.) The tone stack and layout of these amps is an industry standard and have a beautiful, clean way of removing low midrange to clear up the sound of the guitar. I believe all but the first Marshalls came from a high-powered tweed Twin preamp (which was a 80-watt combo amp) and a Bassman power amp. The schematic was a little different. It was one half-tube into a full-tube cathode follower, into a more midrange-y tone stack, into the phase splitter and power tubes and output transformer. Both of these circuits have different kinds of sounds. What’s interesting is Marshall kept modifying their amps for less bass, more high midrange and treble, and more gain. In addition, master volume controls started being added by Fender and Marshall around 1976. The goal was to give more gain at less volume. Understanding these circuits has been a lifelong event for Doug and me.
Then, another designer came along by the name of Alexander Dumble. He modified the tone stack in Fender amps so you could get more bass and a different kind of midrange. Then, after the preamp, he put in a distortion circuit in a switchable in and out “loop.” In this arrangement, the distortion was like putting a distortion pedal in a loop after the tone controls. In a Fender amp, most of the distortion comes from the output section, so turning the tone controls changes the sound of the guitar, not the distortion. In a Marshall, the distortion comes before the tone controls, so when you turn the tone controls, the distortion changes. The way these amps compress and add harmonics as you turn up the gain is the game. All of these designs have real merit and are the basis of our modern tube–and then modeling—amplifiers.
Everything in these amps makes a difference. The circuits, the capacitor values and types, the resistor values and types, the power and output transformers, and the power supplies—including all those capacitor values and capacitor manufacturers.
I give you this truncated, general history to let you know that the amp business is just as complicated as the guitar business. I didn’t even mention the speakers or speaker cabinets and the artform behind those. But what’s most important is: When you plug into the amp, do you like it? And how much do you like it? Most guitar players have not played through a real Dumble or even a real blackface Deluxe Reverb or a 1966 Marshall plexi head. In a way, you’re trusting the amp designers to understand all the highly complex variations from this history, and then make a product that you love playing through. It’s daunting, but I love it. There is a complicated, deep, and rich history that has influenced and shaped how amps are made today.
Lenny Kravitz’s lead-guitar maestro shares how his scorching hit solo came together.
Hold onto your hats—Shred With Shifty is back! This time, Chris Shiflett sits down with fellow west coaster Craig Ross, who calls in from Madrid equipped with a lawsuit-era Ibanez 2393. The two buddies kick things off commiserating over an increasingly common tragedy for guitarists: losing precious gear in natural disasters. The takeaway? Don’t leave your gear in storage! Take it on the road!
Ross started out in the Los Angeles band Broken Homes, influenced by Chuck Berry, Buddy Holly, and the Beatles, but his big break came when he auditioned for Lenny Kravitz. Kravitz phoned him up the next day to tell him to be at rehearsal that evening. In 1993, they cut one of their biggest hits ever, “Are You Gonna Go My Way?” Ross explains that it came together from a loose, improvisatory jam in the studio—testament to the magic that can be found off-leash during studio time.
Ross recalls his rig for recording the solo, which consisted of just two items: Kravitz’s goldtop Les Paul and a tiny Gibson combo. (No fuzz or drive pedals, sorry Chris.) As Ross remembers, he was going for a Cream-era Clapton sound with the solo, which jumps between pentatonic and pentatonic major scales.
Tune in to learn how he frets and plays the song’s blistering lead bits, plus learn about what amps Ross is leaning on these days.
If you’re able to help, here are some charities aimed at assisting musicians affected by the fires in L.A:
https://guitarcenterfoundation.org
https://www.cciarts.org/relief.html
https://www.musiciansfoundation.org
https://fireaidla.org
https://www.musicares.org
https://www.sweetrelief.org
Credits
Producer: Jason Shadrick
Executive Producers: Brady Sadler and Jake Brennan for Double Elvis
Engineering Support by Matt Tahaney and Matt Beaudion
Video Editor: Addison Sauvan
Graphic Design: Megan Pralle
Special thanks to Chris Peterson, Greg Nacron, and the entire Volume.com crew.
Tobias bass guitars, beloved by bass players for nearly half a century, are back with the all-new Tobias Original Collection.
Built for unrivaled articulation, low-end punch, and exceptional ergonomics, the all-new Tobias Original Collection comprises an array of six four and five-string bass models all offered in both right and left-handed orientations. The Tobias range features Classic, Killer B, and Growler models, and each is equipped with high-quality hardware from Babicz and Gotoh, active electronics from Bartolini, and the iconic Tobias asymmetrical neck design. Crafted from the finest tonewoods, Tobias Original Collection bass guitars are now available worldwide on Gibson.com, at the Gibson Garage locations, and at authorized Gibson dealers.
The bass world has been clamoring for the return of the authentic, high-end Tobias basses, and now, Tobias has returned. Combining the look and tone of the finest exotic tonewoods, such as quilted maple, royal paulownia, purpleheart, sapele, walnut, ebony, and wenge, with the feel of the famous Tobias Asym asymmetrical neck and the eye-catching shapes of the perfectly balanced contoured bodies, Tobias basses are attractive in look and exceptional in playing feel. However, their sonic versatility is what makes them so well suited to the needs of modern bassists. The superior tone from the exotic hardwoods, premium hardware, and active Bartolini® pickups and preamps results in basses with the tonal flexibility that today’s players require. Don’t settle for less than a bass that delivers everything you want and need –the look, the feel, and the sound, Tobias.
“I’m thrilled to release Tobias basses, emphasizing the use of exotic woods, ergonomics, and authenticity to the original Tobias basses,” says Aljon Go, Product Development Manager for Tobias, Epiphone, and Kramer. “This revival is a dream come true, blending modern craftsmanship with the timeless essence of Tobias.”
“It’s amazing to see this icon of the bass world return,” adds Andrew Ladner, Brand Manager for Epiphone and Kramer. “These models are truly a bass player’s bass, and true to the DNA that makes Tobias world-class—the ace up the sleeve of bass players around the globe since 1978. Today’s players can find that unique voice and feel that only Tobias can offer.”
For more information, please visit gibson.com.