Electrolytic capacitors are your stomps' first line of defense against bad current. Keep them healthy and your tones will be, too.
Feeding clean power to guitar effects is really important. We do our best to buy the highest quality power supplies that we can find for our precious pedals. Once that clean power is fed into the unit from the wall outlet, it often goes through something called a power filter, inside the power supply. This ensures that the pedal's power needs are being met, and allows each pedal to function properly. It also mostly gets rid of ripple.
Ripple (specifically ripple voltage) in electronics is the residual periodic variation of the DC, or direct current voltage, within a power supply using an AC, or alternating current, source, like the electrical outlets in your home or studio. If you're curious, you can read all about DC versus AC current at electrical4u.com/dc-current.
Ripple is wasted power, and has many undesirable effects. It heats components, causes noise and distortion, and may cause digital circuits to operate improperly. Ripple can be reduced by adding the aforementioned electronic filter into the circuitry, to ensure that the pedal is getting the proper juice. There are parts called electrolytic capacitors that do a lot of the heavy lifting in this section of a circuit. You can learn more about capacitors at a variety of websites, including Wise-Geek.com, Techcircuit.org, Beavisaudio.com, and coda-effects.com, and you can see what they look like above.
Ripple is wasted power, and has many undesirable effects.
Those of us who love and cherish old amps know all about capacitors. The first thing I do when I acquire a gem from yesteryear is take it to a qualified amplifier technician to have it thoroughly inspected, and to have the power filter capacitors replaced with new ones. The reason for this is that over time these capacitors can dry out and cause the amp to not function properly, or to just simply stop working. In a worst case scenario, it can even cause electric shock.
When an electrolytic capacitor is going bad, it can appear to be deformed, sometimes bulging out at the ends. If the power filter capacitors—or really any of the electrolytics—look like this, it's a sure sign that it's time to take the amp to a tech for them to be replaced. In some cases, there might not be any visual indication at all when a cap goes bad. Most amp technicians I have dealt with say that a good rule of thumb is to replace these capacitors every seven years or so.
For reference, here's what caps can look like when they're blown:
The electrolytic capacitors in effects pedals also wear out over time. As in amps, caps in pedals are used for multiple purposes. Coupling capacitors let AC pass through them, but not DC. And RC (resistor-capacitor) filter caps cut off frequencies above or below a certain threshold. But the classic role is the one we're discussing here: smoothing out ripples in the power supply. Capacitors have what is known as an "end of life cycle." This means that the manufacturer only guarantees them to remain fully functional for a certain amount of time. That time frame can typically range anywhere from 1,000 to 5,000 hours.
There have been a few occasions when I have purchased a vintage pedal I had been trying to find for ages, only to get it plugged in and find it unusably noisy and/or dull-sounding. I usually re-cap these old circuits before I do anything else to them. This usually brings the pedal's power back to its former glory, ensuring that the unit will behave as it was intended to for another decade or so. I would say nine times out of 10, replacing these capacitors creates a massive difference in clarity and sound. Take a look at one of my recapped circuit boards:
Keeping your pedals healthy internally is a great way to ensure that they will last lifetimes. Having them re-capped is one way to help maintain the integrity of the circuits inside. I am so glad I discovered this when I was early in my career as a pedal user and builder. It has certainly given a few of my formerly fallen soldiers a new lease on life.
Long to try your hand at building a pedal but can't help feeling overwhelmed? Let us enlighten you on the tools, materials, and available resources, as well as teach you how to build a critical, oft-overlooked testing device.
The DIY guitar-pedal world has been exploding over the past few years—so much so that it's likely at least a few of you have dipped a toe in already. I know I did. After using pedals for so many years and becoming pretty much obsessed with them, I felt a burning desire to learn what's going on inside these contraptions. But initially I was pretty intimidated. There is so much to learn! And even though we live in an age when all the information we need is practically at our fingertips, it's sometimes difficult to know how to word things in a search engine to get what we're looking for. Luckily, there's an immense DIY community out there, too—blogs, forums, and general-information reference sites. In my experience, just about everyone in the community is eager to help each other, so it didn't take long for me to feel welcome and encouraged.
Even so, two big things have become glaringly obvious to me during my years of pedal building. First, while there's a ton of information and lots of goodwill on the scene, there isn't really a single place that pulls together both the most important foundational concepts and a comprehensive list of the tools a novice needs to have not just a fun time, but a successful first building experience. No one likes spending a bunch of time and money on parts, tools, and assembly only to have a worthless hunk of junk that doesn't work at the end of it all.
Secondly, very few places mention one of the most important, helpful, and time- and wits-saving tools that a would-be pedal builder can have at their disposal. No matter how experienced you are, no matter what you're building, the simple fact is that if you don't have a circuit-tester box, you're probably losing a lot of time and getting way more frustrated than you need to during a pedal build.
What exactly is a circuit-tester? It's a special, prewired "dummy" pedal you can use over and over again to test any circuit you're working on. In other words, it will function as the vicarious housing for any DIY pedal project you're working on, allowing you to hear it and know that it works before you install the project in a housing with its own jacks, etc. To that end, I put together this brief tutorial for a DIY tester box. Besides being very useful for any future pedal projects you might undertake, the tester-building process itself will be great practice for upcoming pedal builds, too. Once you've mastered this, you'll be ready to move onto building your first pedal, whether it's a kit or a copy of a popular circuit.
Let's start with essential tools, since there are so many options on the market that might seem fine but actually aren't well suited to pedal-building tasks.
Essential Pedal-Building Tools
Soldering iron. You don't need the fanciest one around, but a cheapie can definitely make your projects a lot less fun. An iron of 40 or more watts will get the job done. And while you don't have to get one with a digital readout, it's a heck of a lot easier to use. Otherwise, you'd need to rig up a way to test your iron's temperature to ensure it stays at an appropriate, steady temperature for creating good solder joints. I solder at anywhere from 600 to 750 degrees, and I like the set-it-and-forget-it aspect of digital soldering irons. If the temperature drifts, the readout will reflect that fluctuation and readjust within seconds. I've tried about six different soldering irons, including an expensive Weller digital model. I keep going back to the Hakko FX-888D, but if you're not quite ready to plunk down a hundo on your iron, the Weller WLC100 40-Watt Soldering Station will work just fine, too.
Soldering tips. Soldering stations typically come with one soldering tip, usually a large one that's not very useful for pedal building. There are many sizes to choose from, but I tend to use two sizes mostly: a .8mm conical tip and, much less often, a .8mm chisel tip. In my experience, it is better to purchase original-equipment-manufacturer (OEM) brand soldering tips, as after-market tips often don't last long.
Solder. The type of solder typically used for this type of work has an activated rosin flux core and is composed of approximately 60 percent tin and 40 percent lead, although lead-free options are available. I have tried many kinds—lead-free, silver-bearing, no-clean, you name it. I've found lead-free solder incredibly difficult to work with, though perhaps I will find one that works for me in the future. Some folks like a bit thicker diameter of solder than the Kester .02"-diameter solder that I use. I find anything from .02" to .03" in diameter acceptable for pedal building. (Note: Even if you've been soldering for a while, I also recommend finding out more about it from a source such as ElectronicsAndYou.com. There's also a wonderful tutorial video by trusted electronics outfit Pace, Inc.)
Something to clean your iron. This is something you should be doing quite frequently! A moistened sponge works, while something like the handy Hakko 599B Tip Cleaner helps prevent solder blobs from flying in your face or hair.
Smoke absorber. Solder fumes are highly toxic, so a de-fuming fan/smoke absorber is essential—even if you're working in a well-ventilated room. I use a Hakko FA-400, but I still keep all shop windows open and use a ceiling fan to keep the air circulating out. Placing a soldering station right next to an open window with the de-fumer blowing the fume-y air out is the easiest way I have found to keep solder smoke from lingering.
Pliers. I use three different sets of pliers every time I build: a flat long-nose variety with no teeth, a skinny long-nose with no teeth, and flat long-nose pliers with teeth.
Wire cutters. For snipping wires and component leads. I tend to break wire cutter tips rather often, so I keep a few pairs around. I have a robust pair for cutting thick wires and metal, a pair of Xytronic AX103 Side Cutters for most everyday clipping work, as well as a fancy, sharp pair for more dainty work (like snipping leads off of PCBs).
Wire strippers. For trimming a small piece of each wire's outer coating (or "jacket") to expose the bare wire underneath. I like models like this Hanlong 20-30AWG stripper because they can strip a few different gauges of wire. "Self-adjusting" wire strippers like models from Irwin are also popular with some builders, though I find them a bit clunky to use. Note: When I'm not using wire salvaged from unused electronics, I prefer Teflon-coated wire because its outer jacket won't melt. One disadvantage, however, is that it's slippery as can be and nearly impossible to strip with the previously mentioned strippers. The tiny Jonard ST-550 works wonderfully with Teflon—and any other kind of jacket material.
A drill and drill bit(s). A powered hand drill will work fine, however I like to use a step bit like the Irwin 10231 Unibit self-starting fractional step drill bit so I don't have to change the bit every time I want to drill a different-sized hole. You might also want to pick up a center punch like those from Starrett, as well as a very small bit (1/16" or 1/8") that's made to go through aluminum or metal to drill pilot holes for the step bit.
Rocket Sockets. They're not absolutely necessary, but they make installing jacks and hardware easier, faster, and safer. (Trust me—if you use pliers to tighten hardware, they're almost guaranteed to scratch the finish.) Rocket Sockets come in a set that includes all the sizes you'll need for building pedals.
Circuit-board blanks. Two kinds of circuit-board substrate are most widely used for pedal circuits: stripboard (Veroboard is a common brand) has preprinted, horizontal copper rails, while perforated board (aka "perf board") looks similar but doesn't have copper rails (although some types of perf boards have copper tracing around each of the holes). Parts get directly loaded through the top of the board and are connected to each other on the underside. Note: Because we'll be wiring all our circuit-tester parts together directly (aka "point to point"), you won't need circuit-board material for the direct purposes of this article.
Helping Hands circuit-board holder. This affordable Radio Shack accessory is incredibly useful for holding boards and parts while you solder them.
Digital multimeter. This isn't absolutely necessary for our project, but if you expect to keep building pedals it will definitely end up being the most important tool in your kit. Why? To avoid massive headaches at the end of your build, it's a good idea to get in the habit of testing all components before adding them to the circuit. A multimeter is also useful for checking continuity when you solder any two (or more) points together. Cheaper multimeters have a rotary dial that must be set to certain ranges of values to get an accurate reading. I prefer "auto-ranging" multimeters, which automatically test the exact value of an electrical component simply by putting a probe on each of its "legs." The affordable Vici VC97A works well in my experience.
Semiconductor analyzer. The Peak Atlas DCA55 is one of the most-used tools in our shop. We use it to quickly and accurately measure transistors and diodes.
Screwdrivers. One standard-size flathead and one standard-size Phillips head are a must. I also use small screwdrivers for all sorts of things, including forming leads, pushing wires and components into place in tight spaces, and installing knobs. Radio Shack's RS Pro 6-Piece works just fine.
X-Acto #1 precision knife. I can't tell you how handy and necessary these are in every aspect of my creations!
Scissors. I like Fiskars Softouch Micro-Tip Pruning Snips, but just about any kind will work.
Radio Shack Hot Holder. This silicon block has molded compartments for holding everything from 1/4" jacks to footswitches, RCA and XLR plugs, and even pickup switches while you solder parts onto them. I initially balked at the price, but I have to admit I'm using it often.
Desoldering bulb. Learning to desolder is an invaluable skill, as even the most seasoned pedal builders make soldering mistakes, and circuit-board pads and traces don't typically stand up to a lot of reheating while you try to do the job with just your soldering iron. A great way to practice is by desoldering components off PCBs from old or broken electronics. This is one of my favorite things to do, because you get comfortable with the process while saving a precious transistor or two from landfills. (There are other ways to desolder—some folks like to use a pump or solder wick. But I find the bulb to be the easiest, cleanest method, because you can apply different amounts of pressure to desolder more delicately.)
Parts Needed for Our Circuit-Tester Project
Hookup wire. 22- and 24-gauge stranded, pre-bond hookup wire is most common in pedal building, as anything thicker than 22 won't fit some hardware and some circuit-board holes, while anything thinner than 24 won't be robust enough. Jackets can be made of a few different materials— cloth-covered, polytetrafluoroethylene (Teflon)-coated, or the polyvinyl chloride (PVC) type most builders use. You can even get your preferred wire type in pre-cut, pre-"tinned" sets. However, knowing how to strip and tin wires (condition their tips for proper conduction—we'll talk more about this later) is a valuable skill, so I suggest using raw wire like the 24-gauge options available from LoveMySwitches.com.
DIY TIP: Although many pro pedal builders use a single color of wiring for their circuits, it's a good idea for new builders to purchase red, black, green, and blue wire, since, when you go a-hunting for layouts to build, you'll find that many use this color-coding scheme to denote positive, ground, input, and output wires, respectively—just as we have in our circuit-tester project.
Testing leads. Most pedal circuits have four wires coming off of the circuit boards: input (the green lines in our diagrams), output (blue lines), positive (red +9V lines), and ground (black). That means we'll need four testing leads. Because our circuit-testing box will be used over and over again, we should invest in quality, durable leads. I've found Mueller BU-2031-A-12-0 leads to be robust. (If you prefer longer leads, Velleman sets will work as well—but be sure to buy two packages, since each only comes with three.) The alligator-clip end of each lead hooks onto the input, output, positive, or ground wires of the circuit board we are testing, and the "banana-plug" end of each lead plugs into the corresponding banana post (see next entry for more) on the tester pedal.
You can also make your own leads to the exact lengths that are ideal for your workstation. If you go that route, Keystone Electronics 5046 alligator clips are a nice choice. Mueller even has a helpful video showing three different ways to attach an alligator clip to a wire. Meanwhile, AudioTrendsTV has a helpful video showing how to solder a banana plug. (Solder-less screw-on plugs are available, but in my experience the soldered variety are much more durable. If you buy the screw-on type, I recommend soldering the wire in for extra strength.)
You'll also need four banana plugs, and Mueller tapered-handle models are a good option. "Banana plugs" are single-wire electrical connectors used for joining wires to equipment, and the awesome thing about them is that the leads are removable, so you have a ton of options as far as tester leads go. Just be sure to buy the ones with an alligator clip on one end and a 4 mm male banana post on the other.
Banana posts. These are the jacks that the detachable test lead cables with alligator clip ends will plug into when the tester pedal is finished. They are also sometimes referred to as "binding posts" or "terminal binding posts," and you'll need four of these, too.
A metal enclosure. Aluminum enclosures are the most widely used for guitar pedals. For our project, I used an aluminum 1590BB-size enclosure I already had from a previous project. LoopholePedals.com is one of many places that offers drilling services for those who don't have the tools to do so themselves.
Jacks. Our test box has two 1/4" female audio jacks, as well as one 2.1 mm barrel power jack. I use Switchcraft #11 monoand #12B stereo jacks, and Lumberg or Mouser DC jacks.
9V batteries. Batteries are terrible for the environment, but we sometimes need them for circuit testing. I always plug into a circuit powered by just the battery at first. Once it powers on properly, I switch to a 9V DC center-negative power supply for further testing. Rechargeable 9V batteries help ease environmental impact and are easy to charge via USB cable. They don't seem to hold a full 9V charge, but since I only use them for the initial test, the 8.6V I've measured from their leads is good enough.
• 9V battery clip connector (center-negative) power-supply cable. To connect the rechargeable battery to the tester pedal's power jack without having to remove the back of the enclosure. (Don't worry—if you prefer a regular 9V connector, I'm including the wiring scheme for that, too.)
9V, center-negative regulated power supply. Clean power is crucial for a pedal, but especially so when you're testing it. I use the Electro-Harmonix US96DC-200BI, because the power seems to be clean and less noisy than others (I've tried more than a dozen brands).
A latching 3PDT (triple-pole, double-throw) switch. It can be either a footswitch or a toggle.
Note: Speaking of switches, it's a good idea to research how they work if you haven't already done so. Understanding how the internal mechanisms connect and how the connections change as the switch is engaged makes the whole off-board-wiring experience much less daunting. BeavisAudio.com has some very useful information on the subject, and DIY Guitar Pedals has an informative video, too.
Bypass LED (light-emitting diode) and LED holder. Pick any color you like. 5 mm and 3 mm models seem to be most popular for pedal building.
1kΩ 1/4-watt resistor. LEDs are quite robust, but they need a resistor attached as a current limiter so they don't blow. You can use a 2.2k or 4.7k resistor too. The higher the resistance, the dimmer the light will be.
The Pedal Builder’s Best Friend: How to Build a Circuit Tester
Okay, I think I've hyped this killer tool enough. Unless you need to take a sec to go online and consult our Soldering 101: A Step-by-Step Guide, let's build this thing! Here's a wiring diagram.
1. Drill the housing. Before we can start wiring, the enclosure needs holes drilled out to accommodate the input, output, and power jacks, as well as the LED and bypass (on/off) switch. If your enclosure didn't come with predrilled holes, you can drill for the jacks on the housing's top or sides, whichever you prefer. I prefer power and audio jacks on top, with the power jack in the center and the input and output jacks opposite each other whenever possible.
We also need to drill four holes for the banana posts that will be connected internally. As mentioned earlier, every circuit you build will have input (green diagram lines), output (blue), positive (red), and ground (black) wires that need to be connected to your tester pedal. Note: The enclosure I'm using already had four holes on top, so my layout reflects this. You might choose to put the banana posts on the side(s), top, or someplace else. That's the beauty of DIY!
I have a mantra: Measure three times, drill once. You can use a Sharpie or other marker to mark the spots you want to drill. Hit each mark with the center-punch tool, then drill pilot holes. Once pilot holes are drilled, you're ready to install your step bit in the drill. (Reminder: The step bit is marked on its side with size values so you know where to stop drilling for the desired hole size.)
PRO TIPS: Some DIY sites have drill guides you can download and print out to make the process easier, but it's still good to learn how to do it manually. Also, Barry Steindel from GuitarPCB.com has a great video tutorial on how to drill pedal enclosures with a hand drill, and DIY Guitar Pedals has one for those who prefer a drill press.
IMPORTANT: Most component and hardware manufacturers publish data sheets listing characteristics and specifications—including physical measurements—for their products. It's a good idea to consult the data sheet for each of your components prior to drilling so that you know how many steps of your step drill bit (or which sizes of standard drill bits) to use.
2. Prepare the switch. To start with, let's connect a couple of "jumpers" on the underside of our 3PDT switch so it functions as a "true bypass" switch (which provides the most transparent signal for circuit testing). This can be done a few different ways, but my preferred method is to add a wire between lugs 1 and 8, as well as lugs 6, 7, and 9. (As you see in the image below, some builders use a 0Ω resistor rather than a bare wire for the jumper between lugs 6, 7, and 9. It's perfectly fine to use a simple wire for this, which is why I didn't include a second resistor in the list of necessary parts for this build.) For now, only apply solder to the three bottom lugs, since the two other lugs (1 and 6) also need to accommodate the wires we'll add in later.
Note: Although you can use regular hookup wire, I use snipped-off leg pieces from resistors or other components for these jumpers.
3. Prepare the LED wiring "harness." First, we're going to trim the LED's ground (cathode) lead, which is the shorter leg. Then we'll "tin" the trimmed end by touching the soldering-iron tip to it, applying a tiny dab of solder, and then sliding the iron tip back and forth along the ground lead for a brief moment until the solder melts and the entire surface of the leg appears shiny. Why? Tinning limits corrosion of the metal leads and helps components fuse together better at solder joints. The LearnElectronics channel has a useful tinning demo video.
Next, cut all but a 1/4" off the 1kΩ resistor's legs, then tin the short end. Put the LED's body into one of the "hands" of the Helping Hands tool, with the legs facing inward, then put the long lead of the resistor in the other "hand," with the snipped, tinned leg facing in. Push the "hands" together until the two short, tinned leads of each component overlap. Touch the soldering-iron tip to the junction for a brief moment, add a dab of solder, and remove the iron's tip once the solder has pooled and settled in, nice and shiny. A shiny solder joint is generally a solid solder joint.
The leftover leg on the 1kΩ resistor is sometimes long enough to be soldered directly to the footswitch, as is the case here. But if your LED hole is further away than ours, you'll need to add a wire. To do this, trim the resistor's other leg to 1/4" and tin it. Next, strip and tin a piece of black hookup wire long enough to reach from the 3PDT switch to the LED hole. Now snip the LED's longer leg (the positive or "anode" lead), again to a 1/4", and tin it. Cut another wire long enough to reach from your power jack to the LED hole, then strip and tin the ends. Load the stripped, tinned wire into the other Helping Hands holder and push the "hands" together until the end of the wire overlaps the LED's anode. Solder them together so that the solder has pooled and settled, nice and shiny, as before.
Although it's not crucial, you can encase these two solder points in 1/8" shrink tubing for extra stability, neatness, and to help keep the joints from shorting out against each other or the enclosure (don't use electrical tape instead—you'll regret it!). The YouTube channel MrJustDIY has a helpful video on how to do so. The most important thing is to make sure your solder joint is good before you cover it. I recommend testing for continuity with a multimeter before adding the shrink stuff.
4. Install the enclosure's hardware. With our footswitch and LED harness ready to go, we're set to use those Rocket Sockets (or other appropriately sized socket wrenches) to attach the footswitch and the input, output, and power jacks.
As for the banana posts, they have a hollow, threaded column with an insert at the top that accepts a banana plug. IMPORTANT: You don't want that metal post touching the metal enclosure at all. Thankfully, banana posts come with plastic insulators that go around the post, ensuring that they don't short-out the circuit. Install the banana post from the top, as shown below.
Next, put the plastic insulator cylinder over the post, followed by the little tab thing, then the nut. Tighten it snugly, but be careful not to crack the plastic insulator by over-tightening.
Note: If you're wondering why my LED isn't installed in a holder/bezel, it's because my recycled enclosure already had an LED glued in. It's much cleaner and sturdier to use a holder or bezel, however. If you aren't using shrink tubing around the joints, it's imperative that none of the bare leads touch the bezel (if it's metal) or the enclosure. We don't want it to short out—or worse, to blow! When you install your LED, make sure the positive and ground wires are properly oriented before you push the LED into the holder. Point the positive wire toward the power jack, and gently bend the ground-plus-resistor lead toward the bypass switch.
5. Wire and solder the circuit. Measure the distance to and from each of the points that need to be connected, as per the wiring diagram—and, ideally, in the same colors. Be sure to add a couple extra millimeters on each wire, as it's really annoying to get in the building groove only to realize a wire is too short! Next, use your wire strippers to strip 1/4" of the plastic jacket off the ends of each wire. As you tin each wire end, keep in mind that PVC jacketing melts very easily, so don't apply heat too long or you'll end up with a mess. The tinned wire ends should look shiny all the way around, like they're encased in chrome.
TECH TALK: Let's discuss 1/4" jack anatomy for a second. We are using two types—our output jack is mono and has two tabs, while our input jack is stereo and has three tabs. Turn the input jack sideways, and you'll see three protective wafer layers separating three metal terminals on the jack. These are commonly referred to as the "tip" and "ring." The ring is above the second wafer. The tip is the terminal above the first wafer, just above the base of the jack itself. The ground tab, or sleeve, is connected to the center part of the jack at the base, floating above all three wafers, and does not have a protective wafer on top. The output jack will only have two protective wafers separating the two metal conductors (the ground and tip tabs). If you decide not to add the battery snap internally, you could use two mono Switchcraft jacks as you would not need the additional ring connection used for turning the battery on and off.
Okay, let's insert and solder all the ground wires first. I always use black wire to avoid confusion and match the diagram. Again, make sure each solder joint is shiny before you move to the next one. Also, be sure none of the wires are too taut, or they're likely to eventually come loose.
Next, I like to insert and solder the red, positive-connection wires. This is easier than ground wiring, because it only connects in two spots and one wire is already attached to the LED's positive leg. Note: Although the diagram looks like only one wire is attached to the power jack, a separate red wire will go from both the LED and the positive banana post to the power jack's sleeve pin (see photo). Both wires should fit there fine, but don't solder that joint until both wire tips are gently squeezed into the hole.
If you want to install a battery snap, do that now. Strip and tin the ends. Note: Soldering the red wire to the power jack's one remaining empty tab prevents the battery from losing juice—but only if you remember to unplug your 1/4"instrument cable from the input when you're not using the box. Plugging into the input connects the battery. Unplugging disconnects it.
Now let's install our input (green) wires. One goes from the tip of the input jack to lug 2 (middle lug in the leftmost column) of our 3PDT switch. The other green wire goes from the input banana post's tab to lug 1 (top left) on the switch, along with one end of the jumper.
To connect output (blue) wires, route one from the tip of the output jack to lug 8 (middle of rightmost column) on the switch. The second blue wire goes from the output banana post to lug 7 (top right) on the 3PDT switch.
Lastly, connect the LED's ground leg to lug 4 (top row, middle) on the footswitch. Remember, my example looks a little different and your ground will be the black wire coming off the LED.
6. Test the circuit with a multimeter. Set your meter to "continuity" mode (consult its manual if you're not sure how to do so), touch one of its probes to a solder point in our circuit tester, then touch the other probe to the solder point on the other end of that particular connection. For example, touch one probe to the solder point located on the input-jack tip, and touch the other probe to lug 2 (middle lug in the leftmost column) of our 3PDT switch. Your meter should beep or light up if you have a solid connection. Once you've tested and found continuity in all our circuit tester's connections, you'll know it's ready to start testing guitar-pedal guts.
Using your new circuit tester is really easy. First, make sure it's got power from a 9V battery or an adapter, then simply plug your guitar into the tester's input jack, and your amp into its output. Then attach each of the circuit-tester's four leads (input, output, ground, and positive) to the corresponding wires on the circuit board you're building or testing. In other words, connect the alligator clip from your new circuit-tester's input lead to your project pedal's input wire, connect the alligator clip from the tester's output lead to the output wire on your project pedal, and so on for the positive and ground connections, as well. That's it! Engaging the bypass switch will connect the circuit. Bypassing will yield a clean guitar signal.
Now you have a simple, easy way to test all the wonderful DIY effects you'll be building. Congratulations! Hopefully, this article has shined a little light on the processes involved with learning to wire a pedal. Moreover, I hope you had as much fun building it as I did! In fact, I'd love it if you'd share your tester-pedal shots with Loe Sounds (@loesounds) on Instagram Stories.
I would be remiss if I didn't acknowledge Steve Daniels and the crew at Small Bear Electronics for their dedication to providing education and reliable supplies to the DIY pedal community for 22 years. At publication time, Small Bear had announced it would soon be closing its doors. Pedal builders everywhere will miss them dearly, and we can only hope someone comes along to carry the torch and fill the big void Small Bear will leave.
​DIY Pedal Sites You Should Check Out
- The DIYStompboxes.com forum is my go-to. It's where I met invaluable mentors like Pink Jimi Photon (of PJP Effects), and Dino Tsiptsis and Phil Moulder, whose Dead End FX site has intermediate to advanced projects and PCBs, including some pretty rare stompbox gems.
- The Effects Layouts blog features some of the tidiest PCBs and layouts for perf boards based on popular guitar-pedal schematics.
- The Tagboard Effects blog has Vero-type stripboard layouts for popular pedal schematics, as well as a helpful forum.
- Madbean Pedals hosts a forum with lots of really nice, helpful folks. They've also got downloadable PCB layouts, sell quality PCBs, and some of the most well-documented projects out there, from beginner to advanced level.
- Beavis Audio Research has a whole bunch of great information, including well-laid-out, easy-to-read diagrams.
- R.G. Keen's Geofex. Keen is practically the godfather of DIY guitar effects. Most of us couldn't be doing what we are doing without what we have learned from this invaluable site!
- RunOffGroove.com is an old-school site with great, bare-basics schematics and articles.
- ElectroSmash.com is a treasure trove of projects, schematics, component information, and detailed breakdowns of popular pedal circuits.
- MusicFromOuterSpace.com features mostly DIY synth stuff, but I learned so much from their articles. Ray Wilson's contributions to the DIY community are too many to count.
- Experimentalists Anonymous allows you to make your own layouts from dozens of schematics.
- DIY Layout Creator offers freeware for designing layouts and is great for learning.
Stompbox builder Aisha Loe on how a recent encounter with an old bandmate answered the age-old question once again.
I had a conversation with a dear friend and former bandmate recently, about how much using effects has inspired our musical directions and overall journeys as players. We smiled wide as we reminisced about what an epiphany it was for us, as new guitarists, to plug into a stompbox for the first time. For many, it's the initial experience of jamming with yourself. Fresh, exciting sounds are coming out. Inevitably, noodling ensues, which can often lead to bursts of creativity.
Something as simple as a 3-knob delay pedal can open up so many ideas. I'll never forget the first time I tried an Ibanez AD-9 Analog Delay. I instantly had a beat to play along to! It was like playing to a metronome of my own expression. I learned about syncopation using this effect, while playing in and out of the beat and stumbling upon grooves. I found that, even when I wasn't using delay, it had affected the way I played from then on. It also taught me when not to play. And little riffs would just pour out of me in those early moments, plugged into this box of possibilities. I was playing things I didn't think I knew how to play at that early stage in my life as a musician.
Playing through that delay was the first time that I felt I could come up with my own ideas and, eventually, my own songs. It was invigorating and helped to start me on my own creative path. I quickly realized that I needed to get some more pedals. I bought a Boss OD-1 overdrive, a Dunlop wah, and an MXR Phase 90, which led to more creation, inspiration, and learning opportunities.
I think of effects as part of the instrument itself now and can't imagine making music without them.
I came of age in the late '80s/early '90s, at a time when a lot of guitarists had MIDI multiple-effects rigs. They were popular, and companies like DigiTech and Roland were coming out with state-of-the-art units. Me and my bandmates were totally in love with using effects. We saved up for our first unit, a DigiTech GSP-5. Then we bought a Roland GP-16, eventually graduating to the more expensive Lexicon stuff. We went far down that rabbit hole for several years. It was so much fun! Programming sounds was time-consuming, annoying, and not-so-user-friendly, but the ability to manipulate effects in such a deep way was profound. Many song ideas were born out the sounds coming from those units.
We came to realize that we had perhaps gone off the deep end, and that these pre-programmed effects were beginning to limit us from improvisation and jamming on new ideas as a band. So, we stripped it back down again—back to those original, single-effect pedals that had inspired us in the first place. We found ourselves coming up with new variations on old ideas that had never previously fully materialized. What I love about effects is they can help you come full circle like that, over and over again.
Tash Sultana experiments with her pedalboard setup.
Photo by Alexis Kaplan
Fast forward a bunch of years, and many pedals, later. I make my music as a solo artist. At this moment, I'm re-impressed with using lots of effects to help me conjure up what's in my head. Many of the ideas for the pedals I build are coming out of my musical imagination. They are sounds I want to hear that I know will invoke new ideas for me, and hopefully others as well. How many times have I been experimenting with a bunch of pedals and come up with that one sound that a whole song was born out of? Countless times. In fact, almost every time.
For me, each effect I familiarize myself with takes me deeper into my instrument(s). I think of effects as part of the instrument itself now and can't imagine making music without them. I'm sure many of you can relate. Many of the artists who inspire me lately use the pedalboard as their instrument. Playing pedals has become its own art form, filled with imagination.
Whenever I get a bad case of writer's block, I reach for that old Ibanez AD-9 Analog Delay. Just that one. You know what? It gets me back on the horse, every time. Even if it gives me that one little cool sound, my creative juices are flowing again. And I'll bet you have a pedal that does the same for you!