Photo 2 — I built my PG Distortion into a pre-painted and pre-drilled enclosure and decorated it with stickers. Because stickers!
Build a killer distortion pedal customized for your style. It’s easier than you think!
Building stompboxes from scratch is easier than you might expect. So is customizing the circuits to suit your style and taste. This project walks you through the process step by step. When you're done, you'll have a killer distortion pedal—and enough knowledge about using and choosing stompbox components to build countless other pedals.
Anyone of average intelligence with functional hands and eyes can complete this project. But there are many steps—more than we can cover in a conventional magazine article. So we've created an illustrated build guide in PDF form, which you must download to complete the project.
Photo 1: The Electra MPC, a late-'70s/early-'80s guitar with built-in effects, has been largely forgotten. But many boutique builders have borrowed its simple yet great-sounding distortion circuit.
What you'll build. This project is a modernized and tweaked version of a distortion circuit that originally appeared in Electra's MPC (Modular Powered Circuits) guitar, a Japanese axe with built-in effects that was imported into the U.S. by Saint Louis Music in the late '70s and early '80s (Photo 1). The guitar was never very popular, but at some point savvy boutique stompbox builders realized that despite (or maybe because of) the circuit's simplicity, it offers terrific overdrive tones. It's a fine alternative to the Tube Screamer-influenced designs found in perhaps 90 percent of today's overdrive pedals.
We're calling our Electra variation the PG Distortion (Photo 2). Compared to a Screamer, the PG Distortion is less compressed, less midrange-heavy, and more responsive to variations in your playing dynamics. It preserves note attack and has an edgy grind that cuts through onstage and in a mix. It's been used in several highly regarded boutique pedals (just Google the phrase "based on Electra distortion").
What you'll learn. The circuit's simplicity makes this a perfect starter project. But the goal isn't just to build a cool pedal from a few modestly priced parts. From the very first steps, you'll make design choices to suit your style and taste. You'll learn how common stompbox components work, and how to choose the right ones for your needs. Making stuff you like is a prime motive for DIY.
Now, if your goal is simply to build a cool pedal as quickly and cheaply as possible, you might consider a prefab DIY kit rather than this project. (I'm especially fond of kits from Build Your Own Clone because of their clever designs and excellent documentation.) But usually, kits like that only tell you the next step—not why you're doing the step, or how you can apply the procedure to future builds. Also, kits usually come with a printed circuit board (PCB) for mounting components, while we will make connections manually using a blank piece of perforated circuit board—a more laborious process, but a more informative one. So think of this as a stompbox-building class, with the PG Distortion as our case study.
Watch the Video Demo of the PG Distortion:
Project overview. The project is organized into five parts:
1. Preparations. Here you assemble all the needed tools and round up your parts.
2. Breadboarding the circuit. You'll assemble the circuit on electronics "breadboard"—an inexpensive prototyping tool that lets you create circuits without soldering. This method makes it easy to understand which components accomplish what (Photo 5).
Photo 5 — An electronics breadboard lets you test and customize circuits without soldering.
3. Customizing the circuit. Breadboarding is also a great way to explore design options, which you'll do right from the beginning.
Photo 6 — After refining your circuit on the breadboard, you'll mount the components on a piece of perforated circuit board, soldering everything together on the board's reverse side.
4. Assembling the circuit on perf board. Once you finalize your design, you'll solder it onto "perf board," a type of circuit board (Photo 6). It's a more complex process than just plugging parts into holes on a prefab PCB, but it permits customization.
Photo 7 — You'll test your completed board on the breadboard before boxing it up.
Once you learn the technique, you'll be able to transpose most stompbox circuits directly from schematic to perf board—and almost every stompbox schematic is available online. (Yes, reading schematics is one of our topics.) After assembling the circuit board, you'll test it using the breadboard (Photo 7).
Photo 8 (left): Your stompbox will have pro hardware, including true-bypass switching, a DC adapter, and a power-indicator LED. Photo 9 (right): In the final assembly, your circuit board rests atop the gain and volume pots.
5. Boxing the circuit. Finally, you'll box everything up. You'll install the jacks, footswitch, LED, and DC adapter into the enclosure (Photo 8) and then add the circuitry (Photo 9).
Tools.
The tools you need—plus a few that are nice to have.
You'll need these tools to complete the project. Ones marked "optional" are nice to have too.
1. Soldering iron. (Preferably 30 watts or more, but not a large gun-type iron. A "soldering station" with a temperature control is a big plus. Use a fine, narrow soldering iron tip—the best choice for small-format electronic work.)
2. Lead-free solder. (Less toxic than the leaded kind, but still nasty.)
3. A damp sponge to clean the soldering iron's tip.
4. A small electronics breadboard. (They make large-format ones, but most stompbox circuits are simple enough for a small board.)
5. An assortment of jumper cables. (You can make your own, but the prefab ones have metal tips that don't fray from repeated use.)
6. Wire stripper.
7. Wire cutter. (Most strippers have cutters, but you'll probably want a separate flush-edged tool for tight, close cuts)
It's never too early to modify projects to better meet your musical needs and personal style. Even in this simple circuit, small modifications can dramatically alter the effect's sound and response
8. Needle-nosed pliers.
9. Phillips-head screwdriver.
10. An adjustable wrench or a wrench set. (Long-handled luthiers wrenches are nice if you can afford them—plus you can use them for guitar repairs.)
11. A digital multimeter. "Auto-ranging" meters are the easiest to work with. These have many functions, and the high-end ones can be quite complicated. But even budget models should have the functions needed for this project: a voltmeter, an ohmmeter, and a continuity function (a beeper that sounds when you touch the test terminals to any two points that are linked electronically).
12. A small saw and vise for cutting perf board to size.
13. Double-sided foam tape
14. Optional: a "helping hand" vise to hold components steady while soldering.
15. Optional: a syringe-style de-soldering pump.
… plus an electric guitar, an amp, and two audio cables.
Parts.
You can get some parts from any electronics supplier. Others you must order from a stompbox parts specialist.
Here's your "bill of materials" (BOM)—the engineer's term for a parts list. Part of the project involves auditioning multiple components to choose your favorites, so not everything in the list will appear in the final pedal. The extra parts are quite inexpensive, so I recommend getting them all—you'll learn a lot. (In the U.S., a complete set of parts should cost around $50.)
1. Five ¼-watt metal film resistors. Values: 470R, 4.7K, 10K, 68K, 2.2M.
2. Four non-polarized capacitors (caps):
· 473 (also called .047µF or 47n)
· 683 (also called .068µF or 68n)
· two units of 104 (.1µF or 100n)
These can be polyester film, "box style," or ceramic—they all sound the same in this circuit. Get small-format caps rated between 50 and 100 volts, not the large-format caps used in amps and other AC-powered devices. (You'll only use two of these in the final pedal.)
3. One 16V 22µF electrolytic capacitor. (This cap type is polarized.)
4. Three transistors: 2N5088, 2N5089, and 2N3904. (You'll only use one in the final pedal.)
5. Eight diodes, two each of the following. (Not all will appear in the final pedal.)
- 1N4001
- 1N914
- 1N34A
- red 3 mm LED
6. Two 16 mm potentiometers ("pots"): A100K and C10K. (Substitute a B10K if you can't find a C10K.)
Schematics can look intimidating, but it doesn't take long to learn the basic symbols.7. A piece of perf board (perforated circuit board) at least 15 holes in width and seven in height. Chances are you'll saw a standard-sized 45 mm x 45 mm piece (shown) in half.
8. A 3PDT footswitch.
9. Three 1/4" mono jacks. (One is for the pedal, and two are for your breadboard testing rig.)
10. One 1/4" stereo jack.
11. One DC jack. (I used the standard type with an internal nut for the photos in this guide, though you may find it easier to work with an external-nut model.)
12. One 5 mm LED (any color).
13. One 5 mm LED bezel.
14. Two battery snaps. (One for the pedal, and one for the breadboard rig.)
15. One 9-volt battery.
16. Two knobs of your choice.
17. One 2" length of 1/8" heat-shrink tubing. (You can substitute standard electrical tape.)
18. Hookup wire, preferably 24-gauge, stranded and pre-bonded. (For visual clarity, it may help to use several contrasting colors, such as black, red, and white.)
19. One 1590B-size enclosure drilled for two knobs, footswitch, input, output, LED, and DC jack. You can order a pre-drilled box, or use a drill press to make your own holes. Use a larger enclosure if you like, though everything should fit into a compact 1590B. (If you have a drill press, you can save a couple of bucks by drilling your own holes. For an appropriate drill template, Google "1590B drilling template.")
Sourcing parts.
Stompbox parts tend to fall into two categories: those you can get from large electronics supply houses, and those sold chiefly by stompbox specialists. Large suppliers such as Mouser, Digi-Key, and Allied often have the lowest prices, but they don't stock some of the essentials. Meanwhile, the specialized stompbox vendors often carry both specialized and non-specialized parts, and the convenience of one-stop shopping may compensate for slightly higher prices on generic parts.
This isn't a complete list of stompbox parts specialists—just three reliable U.S.-based vendors with fine reputations, listed in alphabetical order. I've had great service from all three businesses.
Meanwhile, I hear good things about Germany's Banzai Music from my friends in the E.U.
Mammoth Electronics has created a preassembled kit with all the parts needed for this project. (Premier Guitar has no financial stake in the product—it's merely offered as a convenience.) The parts are good and the prices are competitive, but it's just one way to go. The kit includes all needed parts, but you must provide the tools. More details here.
Despite (or maybe because of) the circuit's simplicity, it offers terrific overdrive tones. It's a fine alternative to the Tube Screamer-influenced designs found in perhaps 90 percent of today's overdrive pedals.
Your workspace. Work somewhere with decent lighting and ventilation. Expect everything to take longer than planned, so don't start working at your kitchen table if you plan to eat there this week. Remember, a clean, well-organized workspace is a sign of a clean, well-organized mind. My bench is a filthy junk pile.
Safety first (and second and third). This project requires tools and techniques that can hurt you if you're not careful. Fortunately, it's pretty much impossible to electrocute yourself with 9-volt circuits like this one, but it's all too easy to cut or burn yourself.
When in doubt, step away from the bench and seek help. Don't touch things that are hot or sharp. Wear eye protection. Don't work when you're angry or stressed. Don't leave anything dangerous where kids or pets can find it. You know the drill—including the fact that you proceed at your own risk, and that neither I nor Premier Guitar can assume any responsibility for injury, property damage, or other unfortunate events that may occur while attempting this project. Be smart and careful, okay?
Common-sense soldering. If you've never soldered, it can be intimidating. And yes, it's possible to burn things, including yourself. But it's actually an easy procedure that quickly becomes second nature. If you've never soldered before, watch a few YouTube soldering tutorials. Start with this one, in which a clever 11-year-old covers most of what you need to know in three fast minutes.
Some basics.
- Don't touch the hot part.
- Don't leave a hot iron unattended.
- Work in a ventilated area. Even if you're using lead-free solder, it can't be healthy to inhale those fumes for hours!
- Wear eye protection.
- "Tin" the iron's tip by touching a bit of solder to it before starting.
- Keep a damp sponge or rag handy and swab the iron's tip frequently to keep it clean.
- Instead of touching solder to the iron's tip, try to heat the target component and melt the solder against the component. (But yeah, sometimes we cheat and quickly touch the solder to the iron for a fraction of a second to get it flowing.)
- A good solder joint is shiny, smooth, and shaped like a Hershey's Kiss. If it's dark, or sits on the surface like a water droplet, reapply the iron.
- If you make mistakes, it may help to have a syringe-type de-soldering tool. (You simply re-melt the solder, and then suck it up with the tool.)
- Consider using a "helping hands" vise to hold your components, leaving both your hands free for work.
It's possible to complete this project with a bare-bones pencil-type soldering iron, but it's far easier if you use a "soldering station" with adjustable temperature from a company such as Weller or Hakko. Simple hobbyist models start at around $40, and fancier models go for about double that. But don't use big, high-wattage soldering guns—they're too powerful for work like this. Use a fine, narrow soldering iron tip suitable for delicate electronics work.
Photo 10 — You can make sense of many stompbox schematics if you learn half a dozen symbols.
Working with schematics. A schematic is simply a graphic representation of a circuit. Schematics can look intimidating, but it doesn't take long to learn the basic symbols. Photo 10 shows the schematic for this project. The build guide PDF discusses it in detail, but here's a quick intro:
- Schematics are usually arranged with the power connection at the top, ground connections at the bottom, input to the left, and output to the right.
- The zigzag lines depict resistors.
- The potentiometer symbol is like the resistor symbol, but with an added arrow to indicate the middle lug.
- Parallel lines symbolize non-polarized capacitors.
- The electrolytic cap symbol adds a curved line and a plus sign to indicate polarity.
- The diode symbol includes a triangle and a line. The side with the line is the negative terminal. The LED symbol adds arrows representing emitted light.
- Like most circuits, this one includes many connections to ground. We could connect them all with lines in the schematic, but the schematic is easier on the eye is we indicate ground connections with a simple symbol: the downward-facing triangle.
Don't sweat it if you're still confused—it's covered extensively in the build guide.
Stompbox parts tend to fall into two categories: those you can get from large electronics supply houses, and those sold chiefly by stompbox specialists.
Mods of the gods.
Sure, you might be a beginning builder, but chances are you have strong tastes when it comes to guitar sound. It's never too early to modify projects to better meet your musical needs and personal style. In fact, you'll be doing just that within the first few minutes. Even in this simple circuit, small modifications can dramatically alter the effect's sound and response.
Your modding experiments will focus on three areas:
- You'll try different values for the input capacitor (labeled C1 in Photo 10). This part acts as a high-pass filter, removing lows. But the result isn't quite like, say, turning down the bass knob on your amp, or using EQ to remove lows from a recording. Here at the front of the circuit, slight component variations alter the effect's fundamental character.
- You'll audition three different transistors (the part labeled Q1 in Photo 10). This component defines the circuit's gain. You can make this an understated overdrive or an angry chunk machine.
- You'll experiment with different combinations of clipping diodes (parts D1 and D2 in Photo 10). The result can range from soft, warm distortion to razor-edged sizzle.
DIY not? Remember, this project isn't just about building a cool distortion pedal. The goal is learning the "whys" as well as the "hows" so you can a) apply these techniques to any project, and b) alter circuits to taste. I hope you find the process fun and informative, and that when the smoke clears—hee hee—you have an inspiring musical tool. For best results, maintain your patience and sense of humor, and don't freak out when you hit the inevitable hurdles.
There's much more info in the PDF build guide, including additional resources and troubleshooting tips. Download it if you dare!
Click to download the entire build guide in an easy-to-use PDF.
[Updated 8/10/21]
- Build Your Own Stompbox! - Premier Guitar ›
- Stompbox Savants - Premier Guitar ›
- The DIY True Bypass Lesson - Premier Guitar ›
- DIY: How to Install Onboard Effects - Premier Guitar ›
- Get the latest FREE Ebook from PG's Digital Press - Premier Guitar ›
- Why I Built This: Atelier Rosenkrantz’s Rachel Rosenkrantz - Premier Guitar ›
- The DIY True Bypass Lesson - Premier Guitar ›
A 6L6 power section, tube-driven spring reverb, and a versatile array of line outs make this 1x10 combo an appealing and unique 15-watt alternative.
Supro Montauk 15-watt 1 x 10-inch Tube Combo Amplifier - Blue Rhino Hide Tolex with Silver Grille
Montauk 110 ReverbThe two-in-one “sonic refractor” takes tremolo and wavefolding to radical new depths.
Pros: Huge range of usable sounds. Delicious distortion tones. Broadens your conception of what guitar can be.
Build quirks will turn some users off.
$279
Cosmodio Gravity Well
cosmod.io
Know what a wavefolder does to your guitar signal? If you don’t, that’s okay. I didn’t either until I started messing around with the all-analog Cosmodio Instruments Gravity Well. It’s a dual-effect pedal with a tremolo and wavefolder, the latter more widely used in synthesis that , at a certain threshold, shifts or inverts the direction the wave is traveling—in essence, folding it upon itself. Used together here, they make up what Cosmodio calls a sonic refractor.
Two Plus One
Gravity Well’s design and control set make it a charm to use. Two footswitches engage tremolo and wavefolder independently, and one of three toggle switches swaps the order of the effects. The two 3-way switches toggle different tone and voice options, from darker and thicker to brighter and more aggressive. (Mixing and matching with these two toggles yields great results.)
The wavefolder, which has an all-analog signal path bit a digitally controlled LFO, is controlled by knobs for both gain and volume, which provide enormous dynamic range. The LFO tremolo gets three knobs: speed, depth, and waveform. The first two are self-explanatory, but the latter offers switching between eight different tremolo waveforms. You’ll find standard sawtooth, triangle, square, and sine waves, but Cosmodio also included some wacko shapes: asymmetric swoop, ramp, sample and hold, and random. These weirder forms force truly weird relationships with the pedal, forcing your playing into increasingly unpredictable and bizarre territories.
This is all housed in a trippy, beautifully decorated Hammond 1590BB-sized enclosure, with in/out, expression pedal, and power jacks. I had concerns about the durability of the expression jack because it’s not sealed to its opening with an outer nut and washer, making it feel more susceptible to damage if a cable gets stepped on or jostled near the connection, as well as from moisture. After a look at the interior, though, the build seems sturdy as any I’ve seen.
Splatterhouse Audio
Cosmodio’s claim that the refractor is a “first-of-its-kind” modulation effect is pretty grand, but they have a point in that the wavefolder is rare-ish in the guitar domain and pairing it with tremolo creates some pretty foreign sounds. Barton McGuire, the Massachusetts-based builder behind Cosmodio, released a few videos that demonstrate, visually, how a wavefolder impacts your guitar’s signal—I highly suggest checking them out to understand some of the principles behind the effect (and to see an ’80s Muppet Babies-branded keyboard in action.)
By folding a waveform back on itself, rather than clipping it as a conventional distortion would, the wavefolder section produces colliding, reflecting overtones and harmonics. The resulting distortion is unique: It can sound lo-fi and broken in the low- to mid-gain range, or synthy and extraterrestrial when the gain is dimed. Add in the tremolo, and you’ve got a lot of sonic variables to play with.
Used independently, the tremolo effect is great, but the wavefolder is where the real fun is. With the gain at 12 o’clock, it mimics a vintage 1x10 tube amp cranked to the breaking point by a splatty germanium OD. A soft touch cleans up the signal really nicely, while maintaining the weirdness the wavefolder imparts to its signal. With forceful pick strokes at high gain, it functions like a unique fuzz-distortion hybrid with bizarre alien artifacts punching through the synthy goop.
One forum commenter suggested that the Gravity Well effect is often in charge as much the guitar itself, and that’s spot on at the pedal's extremes. Whatever you expect from your usual playing techniques tends to go out the window —generating instead crumbling, sputtering bursts of blubbering sound. Learning to respond to the pedal in these environments can redefine the guitar as an instrument, and that’s a big part of Gravity Well’s magic.
The Verdict
Gravity Well is the most fun I’ve had with a modulation pedal in a while. It strikes a brilliant balance between adventurous and useful, with a broad range of LFO modulations and a totally excellent oddball distortion. The combination of the two effects yields some of the coolest sounds I’ve heard from an electric guitar, and at $279, it’s a very reasonably priced journey to deeply inspiring corners you probably never expected your 6-string (or bass, or drums, or Muppet Babies Casio EP-10) to lead you to.
Kemper and Zilla announce the immediate availability of Zilla 2x12“ guitar cabs loaded with the acclaimed Kemper Kone speaker.
Zilla offers a variety of customization to the customers. On the dedicated Website, customers can choose material, color/tolex, size, and much more.
The sensation and joy of playing a guitar cabinet
Sometimes, when there’s no PA, there’s just a drumkit and a bass amp. When the creative juices flow and the riffs have to bounce back off the wall - that’s the moment when you long for a powerful guitar cabinet.
A guitar cabinet that provides „that“ well-known feel and gives you that kick-in-the-back experience. Because guitar cabinets can move some serious air. But these days cabinets also have to be comprehensive and modern in terms of being capable of delivering the dynamic and tonal nuances of the KEMPER PROFILER. So here it is: The ZILLA 2 x 12“ upright slant KONE cabinet.
These cabinets are designed in cooperation with the KEMPER sound designers and the great people from Zilla. Beauty is created out of decades of experience in building the finest guitar cabinets for the biggest guitar masters in the UK and the world over, combined with the digital guitar tone wizardry from the KEMPER labs. Loaded with the exquisit Kemper Kone speakers.
Now Kemper and Zilla bring this beautiful and powerful dream team for playing, rehearsing, and performing to the guitar players!
ABOUT THE KEMPER KONE SPEAKERS
The Kemper Kone is a 12“ full range speaker which is exclusively designed by Celestion for KEMPER. By simply activating the PROFILER’s well-known Monitor CabOff function the KEMPER Kone is switched from full-range mode to the Speaker Imprint Mode, which then exactly mimics one of 19 classic guitar speakers.
Since the intelligence of the speaker lies in the DSP of the PROFILER, you will be able to switch individual speaker imprints along with your favorite rigs, without needing to do extensive editing.
The Zilla KEMPER KONE loaded 2x12“ cabinets can be custom designed and ordered for an EU price of £675,- UK price of £775,- and US price of £800,- - all including shipping (excluding taxes outside of the UK).
For more information, please visit kemper-amps.com or zillacabs.com.
The author in the spray booth.
Does the type of finish on an electric guitar—whether nitro, poly, or oil and wax—really affect its tone?
There’s an allure to the sound and feel of a great electric guitar. Many of us believe those instruments have something special that speaks not just to the ear but to the soul, where every note, every nuance feels personal. As much as we obsess over the pickups, wood, and hardware, there’s a subtler, more controversial character at play: the role of the finish. It’s the shimmering outer skin of the guitar, which some think exists solely for protection and aesthetics, and others insist has a role influencing the voice of the instrument. Builders pontificate about how their choice of finishing material may enhance tone by allowing the guitar to “breathe,” or resonate unfettered. They throw around terms like plasticizers, solids percentages, and “thin skin” to lend support to their claims. Are these people tripping? Say what you will, but I believe there is another truth behind the smoke.
It’s the shimmering outer skin of the guitar, which some think exists solely for protection and aesthetics, and others insist has a role influencing the voice of the instrument. Builders pontificate about how their choice of finishing material may enhance tone by allowing the guitar to “breathe,” or resonate unfettered. They throw around terms like plasticizers, solids percentages, and “thin skin” to lend support to their claims. Are these people tripping? Say what you will, but I believe there is another truth behind the smoke.
Nitrocellulose lacquer, or “nitro,” has long been the finish of choice for vintage guitar buffs, and it’s easy to see why. Used by Fender, Gibson, and other legendary manufacturers from the 1950s through the 1970s, nitro has a history as storied as the instruments it’s adorned. Its appeal lies not just in its beauty but in its delicate nature. Nitro, unlike some modern finishes, can be fragile. It wears and cracks over time, creating a visual patina that tells the story of every song, every stage, every late-night jam session. The sonic argument goes like this: Nitro is thin, almost imperceptible. It wraps the wood like silk. The sound is unhindered, alive, warm, and dynamic. It’s as if the guitar has a more intimate connection between its wood and the player's touch. Of course, some call bullscheiße.
In my estimation, nitro is not just about tonal gratification. Just like any finish, it can be laid on thick or thin. Some have added flexibility agents (those plasticizers) that help resist damage. But as it ages, old-school nitro can begin to wear and “check,” as subtle lines weave across the body of the guitar. And with those changes comes a mellowing, as if the guitar itself is growing wiser with age. Whether a tonal shift is real or imagined is part of the mystique, but it’s undeniable that a nitro-finished guitar has a feel that harkens back to a romantic time in music, and for some that’s enough.
Enter the modern era, and we find a shift toward practicality—polyurethane and polyester finishes, commonly known as “poly.” These finishes, while not as romantic as nitro, serve a different kind of beauty. They are durable, resilient, and protective. If nitro is like a delicate silk scarf, poly is armor—sometimes thicker, shinier, and built to last. The fact that they reduce production times is a bonus that rarely gets mentioned. For the player who prizes consistency and durability, poly is a guardian. But in that protection, some say, comes a price. Some argue that the sound becomes more controlled, more focused—but less alive. Still, poly finishes have their own kind of charm. They certainly maintain that showroom-fresh look, and to someone who likes to polish and detail their prized possessions, that can be a big plus.
“With those changes comes a mellowing, as if the guitar itself is growing wiser with age.”
For those seeking an even more natural experience, oil and wax finishes offer something primal. These finishes, often applied by hand, mostly penetrate the wood as much as coating it, leaving the guitar’s surface nearly bare. Proponents of oil and/or wax finishes say these materials allow the wood to vibrate freely, unencumbered by “heavy” coatings. The theory is there’s nothing getting in the way—sort of like a nudist colony mantra. Without the protection of nitro or poly, these guitars may wear more quickly, bearing the scars of its life more openly. This can be seen as a plus or minus, I imagine.
My take is that finishes matter because they are part of the bond we have with our instruments. I can’t say that I can hear a difference, and I think a myth has sprouted from the acoustic guitar world where maybe you can. Those who remove their instrument’s finish and claim to notice a difference are going on memory for the comparison. Who is to say every component (including strings) went back together exactly the same? So when we think about finishes, we’re not just talking about tone—we’re thinking about the total connection between musician and instrument. It’s that perception that makes a guitar more than just wood and wire. The vibe makes it a living, breathing part of the music—and you.