Why do the schematics differ between two supposedly identical CBS-era Fender amps?
Hi Jeff,
I recently acquired a 1972 Fender Vibro Champ, and after trolling the web discovered that there were actually two circuits used in the Vibro Champ: AA764 and AB764. I believe most people think that only the AA764 circuit was used in these amps, but from the schematic, it seems the AB764 circuit appeared around 03/24/71. The AB764 circuit contains changes to the (higher) voltages used in the amp, and also a cap can change from a 20-20-20 can to a 40-20-20 can. Do you know if all the 1972 and later Vibro Champs used the AB764 schematic? Is there any way to tell whether a Vibro Champ uses the AA or AB version of the circuit without opening it up?
Tom
Olathe, KS
Hi Tom,
I searched extensively but could not locate a schematic with the number AB764 specific to the Vibro Champ—all I found was the usual AA764. The other schematic you reference, AB764, was actually for the Bronco amp. The Bronco was essentially a Vibro Champ with a different name. The Bronco name appeared on the front panel in red rather than the usual blue, and the amp was packaged with the Bronco guitar as a beginner’s set sometime around 1967. That said, let’s see if there are any explanations for the differences between these schematics.
The schematic for the CBS-era Vibro Champ shows the main B+ voltage at the first power supply filter cap as 355V DC. This is supposedly achieved with a 5Y3 rectifier tube using a mains transformer with part number 125P1B. The plate voltage of the 6V6 output tube is stated as 342V DC, giving us a 13V drop across the output transformer primary, which is certainly possible.
The pre-CBS AA764 Champ schematic shows a 5Y3 and P1B mains transformer, with a B+ voltage of 360V DC and plate voltage of 350V DC—very similar to the CBS Vibro Champ.
Meanwhile the Bronco schematic shows the voltage at the first power supply filter cap as 420V DC. Keep in mind that this is supposedly while using the same 5Y3 rectifier and same 125P1B mains transformer as the CBS-era Vibro Champ, though if everything else in the amp is the same, this is theoretically impossible. Also, the stated plate voltage of 342V DC indicates a voltage drop of 78V across the primary of the output transformer. If that was truly the case in a (semi) functioning amplifier, my initial diagnosis would be a bad output transformer. Let’s just assume that someone forgot to update a few numbers here.
I’m not sure there’s a hard, factual explanation, though I do have a theory. To explain, let’s look at the era’s Princeton amp, which uses the same mains transformer as the era’s Champ and Vibro Champ. Perhaps the engineers at Fender decided at some point to design a double-duty transformer, one that could supply the needed voltage for a Champ with a 5Y3, but with sufficient current to supply a Princeton and the increased voltage output from its GZ34 rectifier.
The schematic and layout diagram hint at transformer redesign. Notice how in the Bronco schematic, there’s an internal “shield” lead added to the transformer. This is also indicated on the physical layout diagram for the Bronco by the addition of an orange lead to the mains transformer. So while the part number of the Champ and Vibro Champ transformer never changed, there may have been a redesign resulting in increased voltage.
This is pure conjecture, though the belief that there are Champ amps with different B+ voltages seems to be shared by some aftermarket transformer manufacturers, who offer replacement transformers with selectable secondary taps for higher or lower B+ voltages.
Can you tell which version you have without disassembling the unit? Maybe. The only externally visible clue may be the capacitor. If you can see the side of the large silver filter capacitor mounted on the underside of the chassis (this may require a flashlight and a mirror), you should be able to read the capacitance and voltage of each section written on the side. The first line will either say 20 µF or 40 µF (Fig. 1). If it’s 40, you might have the later, higher-voltage version, even though Princeton amps of the same era with the same mains transformer use a 20 µF cap in this position.
You’ll get a more definitive answer if you measure the voltage at pin 8 of the rectifier tube. Connect the negative lead of a voltmeter to a ground point. (Any point on the chassis will do.) Carefully pull the rectifier tube just slightly from its firmly seated position in the socket, just enough to let the voltmeter’s positive lead touch the pin (Fig. 2). Here you can measure the initial power supply voltage. In this instance, on a unit with the 40 µF cap, you can see I’ve measured 409V DC, which is neither the lower or higher power supply voltage stated on the schematics! Bottom line: It remains a mystery.
Warning:
All tube amplifiers contain lethal voltages. The most dangerous voltages are stored in electrolytic capacitors, even after the amp has been unplugged from the wall. Before you touch anything inside the amp chassis, it’s imperative that these capacitors are discharged. If you are unsure of this procedure, consult your local amp tech.
Stompboxtober is finally here! Enter below for your chance to WIN today's featured pedal from Diamond Pedals! Come back each day during the month of October for more chances to win!
Diamond Pedals Dark Cloud
True to the Diamond design ethos of our dBBD’s hybrid analog architecture, Dark Cloud unlocks a new frontier in delay technology which was once deemed unobtainable by standard BBD circuit.
Powered by an embedded system, the Dark Cloud seamlessly blends input and output signals, crafting Tape, Harmonic, and Reverse delays with the organic warmth of analog companding and the meticulous precision of digital control.
Where analog warmth meets digital precision, the Dark Cloud redefines delay effects to create a pedal like no other
Intermediate
Intermediate
• Learn classic turnarounds.
• Add depth and interest to common progressions.
• Stretch out harmonically with hip substitutions.
Get back to center in musical and ear-catching ways.
A turnaround chord progression has one mission: It allows the music to continue seamlessly back to the beginning of the form while reinforcing the key center in a musically interesting way. Consider the last four measures of a 12-bar blues in F, where the bare-bones harmony would be C7-Bb7-F7-F7 (one chord per measure). With no turn around in the last two measures, you would go back to the top of the form, landing on another F7. That’s a lot of F7, both at the end of the form, and then again in the first four bars of the blues. Without a turnaround, you run the risk of obscuring the form of the song. It would be like writing a novel without using paragraphs or punctuation.
The most common turnaround is the I-VI-ii-V chord progression, which can be applied to the end of the blues and is frequently used when playing jazz standards. Our first four turnarounds are based on this chord progression. Furthermore, by using substitutions and chord quality changes, you get more mileage out of the I-VI-ii-V without changing the basic functionality of the turnaround itself. The second group of four turnarounds features unique progressions that have been borrowed from songs or were created from a theoretical idea.
In each example, I added extensions and alterations to each chord and stayed away from the pure R-3-5-7 voicings. This will give each chord sequence more color and interesting voice leading. Each turnaround has a companion solo line that reflects the sound of the changes. Shell voicings (root, 3rd, 7th) are played underneath so that the line carries the sound of the written chord changes, making it easier to hear the sound of the extensions and alterations. All examples are in the key of C. Let’s hit it.
The first turnaround is the tried and true I-VI-ii-V progression, played as Cmaj7-A7-Dm7-G7. Ex. 1 begins with C6/9, to A7(#5), to Dm9, to G7(#5), and resolves to Cmaj7(#11). By using these extensions and alterations, I get a smoother, mostly chromatic melodic line at the top of the chord progression.
Ex. 2 shows one possible line that you can create. As for scale choices, I used C major pentatonic over C6/9, A whole tone for A7(#5), D Dorian for Dm9, G whole tone for G7(#5), and C Lydian for Cmaj7(#11) to get a more modern sound.
The next turnaround is the iii-VI-ii-V progression, played as Em7-A7-Dm7-G7 where the Em7 is substituted for Cmaj7. The more elaborate version in Ex. 3 shows Em9 to A7(#9)/C#, to Dm6/9, to G9/B, resolving to Cmaj7(add6). A common way to substitute chords is to use the diatonic chord that is a 3rd above the written chord. So, to sub out the I chord (Cmaj7) you would use the iii chord (Em7). By spelling Cmaj7 = C-E-G-B and Em7 = E-G-B-D, you can see that these two chords have three notes in common, and will sound similar over the fundamental bass note, C. The dominant 7ths are in first inversion, but serve the same function while having a more interesting bass line.
The line in Ex. 4 uses E Dorian over Em9, A half-whole diminished over A7(#9)/C#, D Dorian over Dm6/9, G Mixolydian over G9/B, and C major pentatonic over Cmaj7(add6). The chord qualities we deal with most are major 7, dominant 7, and minor 7. A quality change is just that… changing the quality of the written chord to another one. You could take a major 7 and change it to a dominant 7, or even a minor 7. Hence the III-VI-II-V turnaround, where the III and the VI have both been changed to a dominant 7, and the basic changes would be E7-A7-D7-G7.
See Ex. 5, where E7(b9) moves to A7(#11), to D7(#9) to G7(#5) to Cmaj9. My scale choices for the line in Ex. 6 are E half-whole diminished over E7(#9), A Lydian Dominant for A7(#11), D half-whole diminished for D7(#9), G whole tone for G7(#5), and C Ionian for Cmaj9.
Ex. 7 is last example in the I-VI-ii-V category. Here, the VI and V are replaced with their tritone substitutes. Specifically, A7 is replaced with Eb7, and G7 is replaced with Db7, and the basic progression becomes Cmaj7-Eb7-Dm7-Db7. Instead of altering the tritone subs, I used a suspended 4th sound that helped to achieve a diatonic, step-wise melody in the top voice of the chord progression.
The usual scales can be found an Ex. 8, where are use a C major pentatonic over C6/9, Eb Mixolydian over Eb7sus4, D Dorian over Dm11, Db Mixolydian over Db7sus4, and once again, C Lydian over Cmaj7(#11). You might notice that the shapes created by the two Mixolydian modes look eerily similar to minor pentatonic shapes. That is by design, since a Bb minor pentatonic contains the notes of an Eb7sus4 chord. Similarly, you would use an Ab minor pentatonic for Db7sus4.
The next four turnarounds are not based on the I-VI-ii-V chord progression, but have been adapted from other songs or theoretical ideas. Ex. 9 is called the “Backdoor” turnaround, and uses a iv-bVII-I chord progression, played as Fm7-Bb7-Cmaj7. In order to keep the two-bar phrase intact, a full measure of C precedes the actual turnaround. I was able to compose a descending whole-step melodic line in the top voice by using Cmaj13 and Cadd9/E in the first bar, Fm6 and Ab/Bb in the second bar, and then resolving to G/C. The slash chords have a more open sound, and are being used as substitutes for the original changes. They have the same function, and they share notes with their full 7th chord counterparts.
Creating the line in Ex. 10 is no more complicated than the other examples since the function of the chords determines which mode or scale to use. The first measure employs the C Ionian mode over the two Cmaj chord sounds. F Dorian is used over Fm6 in bar two. Since Ab/Bb is a substitute for Bb7, I used Bb Mixolydian. In the last measure, C Ionian is used over the top of G/C.
The progression in Ex. 11 is the called the “Lady Bird” turnaround because it is lifted verbatim from the Tadd Dameron song of the same name. It is a I-bIII-bVI-bII chord progression usually played as Cmaj7-Eb7-Abmaj7-Db7. Depending on the recording or the book that you check out, there are slight variations in the last chord but Db7 seems to be the most used. Dressing up this progression, I started with a different G/C voicing, to Eb9(#11), to Eb/Ab (subbing for Abmaj7), to Db9(#11), resolving to C(add#11). In this example, the slash chords are functioning as major seventh chords.
As a result, my scale choices for the line in Ex. 12 are C Ionian over G/C, Eb Lydian Dominant over Eb9(#11), Ab Ionian over Eb/Ab, Db Lydian Dominant over Db9(#11), and C Lydian over C(add#11).
The progression in Ex. 13 is called an “equal interval” turnaround, where the interval between the chords is the same in each measure. Here, the interval is a descending major 3rd that creates a I-bVI-IV-bII sequence, played as Cmaj7-Abmaj7-Fmaj7-Dbmaj7, and will resolve a half-step down to Cmaj7 at the top of the form. Since the interval structure and chord type is the same in both measures, it’s easy to plane sets of voicings up or down the neck. I chose to plane up the neck by using G/C to Abmaj13, then C/F to Dbmaj13, resolving on Cmaj7/E.
The line in Ex. 14 was composed by using the notes of the triad for the slash chord and the Lydian mode for the maj13 chords. For G/C, the notes of the G triad (G-B-D) were used to get an angular line that moves to Ab Lydian over Abmaj13. In the next measure, C/F is represented by the notes of the C triad (C-E-G) along with the root note, F. Db Lydian was used over Dbmaj13, finally resolving to C Ionian over Cmaj7/E. Since this chord progression is not considered “functional” and all the chord sounds are essentially the same, you could use Lydian over each chord as a way to tie the sound of the line together. So, use C Lydian, Ab Lydian, F Lydian, Db Lydian, resolving back to C Lydian.
The last example is the “Radiohead” turnaround since it is based off the chord progression from their song “Creep.” This would be a I-III-IV-iv progression, and played Cmaj7-E7-Fmaj7-Fm7. Dressing this one up, I use a couple of voicings that had an hourglass shape, where close intervals were in the middle of the stack.
In Ex. 15 C6/9 moves to E7(#5), then to Fmaj13, to Fm6 and resolving to G/C. Another potential name for the Fmaj13 would be Fmaj7(add6) since the note D is within the first octave. This chord would function the same way, regardless of which name you used.
Soloing over this progression in Ex. 16, I used the C major pentatonic over C6/9, E whole tone over E7(#5), F Lydian over Fmaj13, and F Dorian over Fm6. Again, for G/C, the notes of the G triad were used with the note E, the 3rd of a Cmaj7 chord.
The main thing to remember about the I-VI-ii-V turnaround is that it is very adaptable. If you learn how to use extensions and alterations, chord substitutions, and quality changes, you can create some fairly unique chord progressions. It may seem like there are many different turnarounds, but they’re really just an adaptation of the basic I-VI-ii-V progression.
Regarding other types of turnarounds, see if you can steal a short chord progression from a pop tune and make it work. Or, experiment with other types of intervals that would move the chord changes further apart, or even closer together. Could you create a turnaround that uses all minor seventh chords? There are plenty of crazy ideas out there to work with, and if it sounds good to you, use it!
Many listeners and musicians can tell if a bass player is really a guitarist in disguise. Here’s how you can brush up on your bass chops.
Was bass your first instrument, or did you start out on guitar? Some of the world’s best bass players started off as guitar players, sometimes by chance. When Stuart Sutcliffe—originally a guitarist himself—left the Beatles in 1961, bass duties fell to rhythm guitarist Paul McCartney, who fully adopted the role and soon became one of the undeniable bass greats.
Since there are so many more guitarists than bassists—think of it as a supply and demand issue—odds are that if you’re a guitarist, you’ve at least dabbled in bass or have picked up the instrument to fill in or facilitate a home recording.
But there’s a difference between a guitarist who plays bass and one who becomes a bass player. Part of what’s different is how you approach the music, but part of it is attitude.
Many listeners and musicians can tell if a bass player is really a guitarist in disguise. They simply play differently than someone who spends most of their musical time embodying the low end. But if you’re really trying to put down some bass, you don’t want to sound like a bass tourist. Real bassists think differently about the rhythm, the groove, and the harmony happening in each moment.
And who knows … if you, as a guitarist, thoroughly adopt the bassist mindset, you might just find your true calling on the mightiest of instruments. Now, I’m not exactly recruiting, but if you have the interest, the aptitude, and—perhaps most of all—the necessity, here are some ways you can be less like a guitarist who plays bass, and more like a bona fide bass player.
Start by playing fewer notes. Yes, everybody can see that you’ve practiced your scales. But at least until you get locked in rhythmically, use your ears more than your fingers and get a sense of how your bass parts mesh with the other musical elements. You are the glue that holds everything together. Recognize that you’re at the intersection of rhythm and harmony, and you’ll realize foundation beats flash every time.“If Larry Graham, one of the baddest bassists there has ever been, could stick to the same note throughout Sly & the Family Stone’s ‘Everyday People,’ then you too can deliver a repetitive figure when it’s called for.”
Focus on that kick drum. Make sure you’re locked in with the drummer. That doesn’t mean you have to play a note with every kick, but there should be some synchronicity. You and the drummer should be working together to create the rhythmic drive. Laying down a solid bass line is no time for expressive rubato phrasing. Lock it up—and have fun with it.
Don’t sleep on the snare. What does it feel like to leave a perfect hole for the snare drum’s hits on two and four? What if you just leave space for half of them? Try locking the ends of your notes to the snare’s backbeat. This is just one of the ways to create a rhythmic feel together with the drummer, so you produce a pocket that everyone else can groove to.
Relish your newfound harmonic power. Move that major chord root down a third, and now you have a minor 7 chord. Play the fifth under a IV chord and you have a IV/V (“four over five,” which fancy folks sometimes call an 11 chord). The point is to realize that the bottom note defines the harmony. Sting put it like this: “It’s not a C chord until I play a C. You can change harmony very subtly but very effectively as a bass player. That’s one of the great privileges of our role and why I love playing bass. I enjoy the sound of it, I enjoy its harmonic power, and it’s a sort of subtle heroism.”
Embrace the ostinato. If the song calls for playing the same motif over and over, don’t think of it as boring. Think of it as hypnotic, tension-building, relentless, and an exercise in restraint. Countless James Brown songs bear this out, but my current favorite example is the bass line on the Pointer Sisters’ swampy cover of Allen Toussaint “Yes We Can Can,” which was played by Richard Greene of the Hoodoo Rhythm Devils, aka Dexter C. Plates. Think about it: If Larry Graham, one of the baddest bassists there has ever been, could stick to the same note throughout Sly & the Family Stone’s “Everyday People,” then you too can deliver a repetitive figure when it’s called for.
Be supportive. Though you may stretch out from time to time, your main job is to support the song and your fellow musicians. Consider how you can make your bandmates sound better using your phrasing, your dynamics, and note choices. For example, you could gradually raise the energy during guitar solos. Keep that supportive mindset when you’re offstage, too. Some guitarists have an attitude of competitiveness and even scrutiny when checking out other players, but bassists tend to offer mutual support and encouragement. Share those good vibes with enthusiasm.
And finally, give and take criticism with ease. This one’s for all musicians: Humility and a sense of helpfulness can go a long way. Ideally, everyone should be working toward the common goal of what’s good for the song. As the bass player, you might find yourself leading the way.Fuchs Audio introduces the ODH Hybrid amp, featuring a True High Voltage all-tube preamp and Ice Power module for high-powered tones in a compact size. With D-Style overdrive, Spin reverb, and versatile controls, the ODH offers exceptional tone shaping and flexibility at an affordable price point.
Fuchs Audio has introduced their latest amp the ODH © Hybrid. Assembled in USA.
Featuring an ODS-style all-tube preamp, operating at True High Voltage into a fan-cooled Ice power module, the ODH brings high-powered clean and overdrive tones to an extremely compact size and a truly affordable price point.
Like the Fuchs ODS amps, the ODH clean preamp features 3-position brite switch, amid-boost switch, an EQ switch, high, mid and low controls. The clean preamp drives theoverdrive section in D-Style fashion. The OD channel has an input gain and outputmaster with an overdrive tone control. This ensures perfect tuning of both the clean andoverdrive channels. A unique tube limiter circuit controls the Ice Power module input.Any signal clipping is (intentionally) non-linear so it responds just like a real tube amp.
The ODH includes a two-way footswitch for channels and gain boost. A 30-second mute timer ensures the tubes are warmed up before the power amp goes live. The ODH features our lush and warm Spin reverb. A subsonic filter eliminates out-of-band low frequencies which would normally waste amplifier power, which assures tons of clean headroom. The amp also features Accent and Depth controls, allowing contouring of the high and low response of the power amp section, to match speakers, cabinets andenvironments. The ODH features a front panel fully buffered series effects loop and aline out jack, allowing for home recording or feeding a slave amp. A three-position muteswitch mutes the amp, the line out or mute neither.
Built on the same solid steel chassis platform as the Fuchs FB series bass amps, the amps feature a steel chassis and aluminum front and rear panels, Alpha potentiometers, ceramic tube sockets, high-grade circuit boards and Neutrik jacks. The ICE power amp is 150 watts into 8 ohms and 300 watts into 4 ohms, and nearly 500 watts into 2.65 ohms (4 and8 ohms in parallel) and operates on universal AC voltage, so it’s fully globallycompatible. The chassis is fan-cooled to ensure hours of cool operation under any circumstances. The all-tube preamp uses dual-selected 12AX7 tubes and a 6AL5 limiter tube.
MAP: $ 1,299
For more information, please visit fuchsaudiotechnology.com.