If you’re lucky, your guitar neck can feel as familiar and comfortable as an old pair of jeans, but there’s more to it than meets the eye. Discover the ABCs—make that the CUVs—of this crucial appendage.
Whatever your choice of guitar at the moment, your ability to play it depends on an intimate physical relationship between your fretting hand and your guitar's neck. How picky are you when entering into that relationship? You may be the type of player who demands a guitar neck with very specific details—anything else just isn't right. It's sort of a guitar-playing version of monogamy.
Or you may be into an open relationship: "Just give me a guitar and I'll play it." In either case—and before I extend this analogy too far for my own good—it can help to know why you like what you like, and maybe also glimpse what you might be missing.
The simple request I received to write an article about guitar-neck design quickly turned into an extensive list of topics I wanted to cover. Any attempt to sort these topics into categories—those that affect feel and playability, versus those that affect tone, versus those based on construction—is sure to cause controversy. In fact, many can't be separated. To create some sort of organization, I'll just loosely group them, cover the points one by one, and ask for forgiveness later.
Feel and Playability
Neck profile. When picking up a guitar, perhaps the first thought to hit you—at least in terms of playability—is the feel of its neck. There are two related factors to consider: the thickness of the neck and its profile shape.
Preferences vary widely. Before discussing neck shapes, it may help to ponder variations in hand sizes—a basic design consideration. A large male hand is approximately 27-percent bigger than a small female hand. A large guitar neck (such as a Fender U-shaped neck) is only about 17-percent thicker than Fender's standard thin neck. Therefore, typical neck thicknesses don't span a range as varied as players' hand sizes.
Perhaps an even more pertinent measure concerns the curvature—the distance you feel as you wrap your hand around the back of the neck. (Picture a tape measure wrapping under from the 6th string to the 1st string.) On typical guitar necks, that distance varies by less than 10 percent. If you're at either end of the hand-size spectrum, you may have a right to complain because you'll be forced to adapt.
For a guitar to play properly, its neck needs to have a slight bow. This is called relief, and it allows the strings to vibrate over the fretboard without hitting the frets.
Something else to consider: While you're playing, different parts of your thumb contact the back of the neck. With barre chords, your thumb may be flat against the center of the curve, the neck's thickest part. When playing complex chords, your thumb's tip may be in contact. When playing basic riffs, your thumb may rest at the edge of the fretboard. When flying up and down the neck, your thumb may not touch it at all. Or for replicating a Merle Travis/Chet Atkins style of playing, your thumb may be fully wrapped around the neck, fretting a thumping bass line on the low-E string.
Some necks are carved with an asymmetrical profile that's intended to improve playability. It's not a new idea. Among Gretsch's "Seven Points of Supremacy" attributed to their 1939 Synchromatic was a "non-pressure" neck designed to relieve finger strain. This was referred to as the "Miracle Neck" in later years (Fig. 1).
Fig. 1 — In Gretsch's 1951 catalog, the 6192 and 6193 models are described as having a patented "Miracle Neck." This design o ered an asymmetrical pro le for enhanced playability.
Neck finish. Another factor that can elicit strong opinions is how a builder seals the back of a wooden neck to protect it from sweat, skin oils, and the elements. A glossy polyurethane or nitrocellulose finish will feel different from a satin or Tung oil finish. The latter two can allow your hand to more easily slide along the neck, especially on a hot and sticky day.
There's no easy way to change your current guitar's neck to a Tung-oil finish. It requires sanding the finish down to bare wood. Before taking that drastic measure, try sprinkling baby powder on your hand if you think your neck is slowing you down.
Fretwire. If you play violin, cello, or fretless bass, fret size is a non-issue. Guitarists, however, need to consider the fact that fretwire comes in various sizes. Frets are made from an alloy containing 18 percent nickel-silver (a misnomer, because there's no actual silver—which is a good thing, or we'd probably see people melting down our precious vintage instruments).
Early Fender guitars used relatively narrow frets: approximately .080" inches wide and .043" tall. Gibson frets are typically wider and just microscopically shorter. Wide frets can be just over .100", and taller frets around .050". There are too many variables in playing styles and individual finger physiology to generalize about what fretwire may be more or less appropriate for different situations. Like many other guitar-related specs, it's a matter of personal preference. Also, it can be difficult to A-B compare different fretwire sizes. You can try spending a few hours in a friendly guitar shop, but neck shapes and string gauges are likely to vary as well, which can confuse the issue.
Though less common, scalloped fretboards are related to fretwire height. On a scalloped fretboard, the space between frets is dished to keep the fingertips from touching the fretboard wood. These cylindrically concave shapes are great for certain techniques. Think of the incredible bends a sitar player produces. A sitar's arched and elevated frets keep the player's fingers off the fretboard and eliminate any friction against the wood. Scalloped fretboards replicate that for a guitar. With a height of .058", the largest size fretwire can approach a scalloped feel. To get a sense for this, try playing some Ibanez models that sport jumbo frets on this order.
Also, it surprises a few guitarists when I mention that a pressed string doesn't contact the fretboard. Rather, it spans the frets. Unless you have woefully low frets or super-light strings, the string itself won't contact the wood.
Scale length. The distance between the nut and the bridge determines the length of the strings, and this is known as scale length.That measurement won't be entirely precise, however, because intonation adjustments or an angled bar bridge results in variations in the length of each string. A more accurate way to determine scale length: measure the distance from the nut to the 12th fret and multiply by two.
Scale lengths can vary considerably. John Lennon's 325 Rickenbacker had a scale of just 20.75". A "3/4 size" guitar, such as the Guild M-65, has a scale of 22.5". Gibson's Les Paul measures 24.75". A Fender Telecaster's neck is longer at 25.5". Scale length for a baritone guitar can be much higher, like Danelectro's 29.75" neck.
Given identical strings, longer necks require more tension to get into tune. Put another way, shorter scales allow heavier strings to be used with comparatively less tension. It's something to consider if you think you'd like the effect of having more metal driving your pickups.
Fretboard radii. Classical guitar fretboards typically have no radius—they're completely flat. The fretboards on steel-string acoustics will have a cylinder-like radius along their entire length. That's true of electric guitar fretboards as well, although conical shapes are also possible. In the latter case, the radius starts tighter and then flattens out as you go higher up the neck. A neck with a compound radius is less prone to buzzing during string bends.
Vintage Fender guitars have a radius of 7.25", which is noticeably curved. Other guitar fretboards are flatter. The fretboards on Taylor and Martin acoustics typically have a 15" and 16" radius, respectively. Guild acoustics have a 12" radius. In a perfect world, the bridge saddle will match the fretboard radius, but that's not always the case.
Some players prefer a smaller fretboard radius for playing chords—especially barre chords—because it mimics the finger's curve. But others prefer all the strings to be at the same height (or close to it), citing an increase in picking and fretting speed when the string plane is relatively flat.
If your guitar has a 1-piece neck with an angled headstock, you don't need to knock it over to experience a headstock crack or break. Knocking over the case may be sufficient to impart a whiplash injury.
Fretboard width. This is typically measured at the nut, and 1 11/16" is a common width. Acoustic guitarists appreciate a little more space between strings to accommodate fingerpicking, so flattops often have a 1 3/4" fretboard width.
Rickenbacker necks can be notoriously narrow—1 5/8", for example—although models vary. Some manufacturers also offer specs for fretboard width at the 12th fret (2 1/8" for a Martin D-28) or at the high end of the fretboard (just over 2 1/4" for a Gibson Les Paul).
Tone
Neck and fretboard material. Different woods used for the neck impart different characteristics. Harder woods, such as maple, result in a brighter tone. Mahogany, which is softer, will warm things up. Fretboard wood also has an effect—ebony will surpass maple and far surpass rosewood for brightness. (For characteristics of these and more than two dozen other woods, check out Warmoth's handy " Tone-O-Meter" ratings.)
Headstock mass. The idea that adding mass to the headstock will increase sustain and affect tone is controversial. Some guitar brands, such as Epiphone and the highly regarded Froggy Bottom flattops, have oversized headstocks. Is there a sonic payoff or is this simply a cosmetic decision? Rather than opining here, I suggest you test this theory by simply clamping a capo to the headstock of your guitar. Let us all know what happens, if anything.
Construction
Headstock angle. Angling the headstock allows the strings to pull tightly against the nut as they make their way to the tuning pegs, and it's an ancient technique for stringed-instrument makers. Headstock angles can range from zero to a full 90 degrees—although the latter will only apply if you play lute.
Fig. 2 (top) — On 1-piece necks, the headstock's angle causes the grain to run across the headstock, which can put it at risk structurally. Fig. 4 (bottom) — Fender headstocks forgo an angle, and instead drop the surface down, keeping the wood grain in line.
Illustrations by Dan Formosa
An angled headstock on a 1-piece neck has two disadvantages. First, it requires a larger piece of wood for construction. Second, the headstock is more susceptible to breaking, and this is related to wood grain. On a 1-piece neck, the wood is cut so that the grain follows the neck's length—that is, until it reaches the angled headstock, where the grain then cuts across (Fig. 2). The greater the angle, the more it cuts through. Lute makers solved that problem long ago by attaching a separate piece for the headstock, putting the grain in line with the headstock angle. Many guitar makers today do the same.
If your guitar has a 1-piece neck with an angled headstock, you don't need to knock it over to experience a headstock crack or break. Knocking over the case may be sufficient to impart a whiplash injury.
Fig. 3 — A scarf joint adds the headstock as a separate piece, keeping the wood grain in line with the headstock for a stronger part. Taylor Guitars uses an S-shaped cut to join the neck and headstock. While more aesthetically pleasing than a typical straight scarf joint, this "wave" cut also offers increased glue surface and thus provides a stronger connection.
Photo courtesy of Taylor Guitars
Andy Powers, master guitar designer at Taylor Guitars, reports that since the company moved to headstocks with the grain aligned, the number of broken headstocks they see has been reduced to almost zero. Taylor's separate headstocks were first fitted to the neck using a finger joint. It was super strong, but due to staining differences, the crown shape that resulted was noticeable and odd. Taylor subsequently changed to a scarf joint—an angled cut in the neck. But instead of using the more typical straight cut, they chose a subtle S-shaped cut. This increases the glue area compared to a straight cut, and it looks better (Fig. 3).Fender guitars take a different approach, as shown in Fig. 4. To keep manufacturing simple, necks are made from a flat piece of maple with no headstock angle. The front surface of the headstock sits below the fretboard, providing the strings with an angle at the nut, although the 1st and 2nd strings require retainers (aka string trees) to increase the otherwise shallow angle and keep the strings from rattling in the nut slots as they head to the tuners.
Heel. When carving a single-piece neck, the heel, like the headstock, requires a sizable block of wood for construction, and much of this valuable material ultimately ends up as waste. Because of this, the heel is often added as a separate part, using (hopefully) a piece of wood cut from the same block as the neck, so the color matches and the connection can be hidden.
Prior to the 1930s, the only hope to prevent forward bowing was to make necks strong enough to withstand string pull, and this was done by incorporating pieces of wood or steel into the neck assembly to reinforce it. The introduction of an adjustable truss rod changed that. This is a metal bar buried within the neck, running along its length. Any bow in the neck is adjusted by a nut positioned at one end of the rod. Depending on the manufacturer, you access this truss rod nut either at the headstock (revealed by removing the truss rod cover) or at the body end of the neck.
Given identical strings, longer necks require more tension to get into tune. Put another way, shorter scales allow heavier strings to be used with comparatively less tension.
Truss rod design. For a guitar to play properly, its neck needs to have a slight bow. This is called relief, and it allows the strings to vibrate over the fretboard without hitting the frets. Changing to heavier strings will produce more of a bow, as a result of increased pull on the neck. A reverse bow will cause buzzing, as a fretted string will also contact the frets higher up the neck.
The amount of neck relief depends on personal preference, but measured at the 7th fret, it's on the order of .010", or about the diameter of a light-gauge 1st string. You can use feeler gauges to measure this, or even a business card. Here's the technique for checking fretboard relief: Capo or press and hold the 6th string at the 1st fret, then fret and hold the string at the 14th fret. With the 6th string acting as a straightedge, you can now measure the string clearance at the 7th fret. Repeat the process with the 1st string. If you tap either string against the 7th fret while pinning it at the 1st and 14th frets, you'll get an immediate sense of your current neck relief. It's a quick way to keep tabs on this important parameter, which can shift due to seasonal changes or when you change the brand or gauge of strings.
Thaddeus McHugh's 1923 truss rod patent for Gibson shows a curved metal rod buried along the center of the neck (Fig. 5). When the nut at the end of the rod is tightened, a neck bowed by string tension straightens out. From a side view, the rod curves down at its far ends.
Fig. 5 (top) — Here's Thaddeus McHugh's 1923 truss rod patent for Gibson. Intended for use with softer woods, this truss rod curves up in the middle, which is opposite from modern designs. Fig. 6 (bottom) — In Leo Fender's 1964 patent, the truss rod dips down in the middle, which is the approach widely used today. Tightening the truss rod forces it to straighten, pushing the middle of the neck up, eliminating any bow.
Colorized patent drawings by Dan Formosa
In contrast, virtually all single truss rods used today—including Gibson's—curve up at the ends. It's a design that positions the middle of the rod lower in the neck. Fig. 6 shows a 1964 patent drawing for Fender's truss rod, which uses this "cupped" design. With this shallow concave curve, tightening the rod forces it to straighten, pushing the middle of the neck up to eliminate any bow.
With a single truss rod design, tightening compresses the neck lengthwise, as the wood reacts to the rod's increased tension. Also, the curved channel required for a single truss rod is tricky to manufacture. A later development is the double-rod truss rod, which is intended to address these two issues. One rod resists the lengthwise compression of the neck, while the other creates the bow. Manufacturing is easier because the double-rod assembly requires only a straight slot in the neck. Some double-rod models are also able to create a bow in either direction. A downside to the double-rod design? Some added weight in the neck.
Fig. 7 (top) — One of the classic methods for attaching the guitar's neck to its body, the dovetail joint dates back at least as far as ancient Egypt. Fig. 8 (bottom) — The two sections of a mortise-and-tenon joint—like the dovetail joint—are traditionally bonded with hot hide glue.
Illustrations by Dan Formosa
Neck joints. Historically, the two methods used to attach the neck to the body are the dovetail joint (Fig. 7) and mortise-and-tenon joint (Fig. 8). Traditionally bonded with heated hide glue, both joints are designed to be strong and permanent. In fact, in an early ad, Gibson proclaimed its dovetail joint "unbreakable" (Fig. 9).
Fig. 9 — Confident in the strength of their dovetail joint, Gibson declared it "unbreakable" in this 1934 mandolin ad.
As effective and strong as they are, these joints have one disadvantage: When it comes time to reset the neck—which is especially common with acoustic steel-string guitars—removing it is tricky. It takes a skilled pro to steam the joint and loosen it. (This requires temporarily removing a fret above the neck joint, drilling a small hole in the open slot, and carefully heating the glue so it releases its grip on the joint.)
Although not well-received at its 1951 introduction, Leo Fender's simple solution to this thorny problem was to forego either of these two traditional woodworking joints and bolt a heelless neck onto the body. This made Fenders much less expensive to manufacture—both in terms of labor and materials—and it also worked really well.
In 1999, Taylor Guitars bucked flattop tradition by introducing a bolt-on neck system for its guitars. Super-precise computer numerical control (CNC) neck-cutting machinery assures a flawless fit. Neck resets on these instruments can be done in mere minutes, and a luthier can employ accurately machined wood shims to tweak the neck angle. But the bolt-on idea isn't new. Kay Kraft was using this technique to affix necks to their acoustic guitars in the 1930s.
Over and out. We've covered a lot of ground in this overview of the obvious and not-so-obvious decisions that went into your guitar neck's design, and there's more to investigate within each topic. And we didn't get into tuners—obvious neck components that deserve an article of their own—nor did we explore how your string choice affects the neck because that would have taken us a bit off topic. But for now, if we've shed light on what caused you to become infatuated with your current guitar's neck in the first place, then mission accomplished. Better yet: Perhaps the next time you have a chance encounter with a different neck, you'll have the basis for establishing a whole new and rewarding relationship.
Oh, the Shape I'm In
Illustration courtesy of fender.com
Fender describes its neck profiles using the letters C, U, and V. Though these profiles have many period-specific subdivisions, such as '50s V or '70s C, and variations in thicknesses ("deep U shape" or "modern C shape"), the idea is to convey the basic neck contour using familiar, easy-to-visualize symbols. Over the years, Fender's approach has been adopted by other manufacturers and evolved to include such colorful descriptions as "boat V" and "modern vintage."
It's worth noting that for about a decade starting in the early '60s, Fender also used the letters A, B, C, and D to indicate neck width at the nut (1 1/2", 1 5/8", 1 3/4", and 1 7/8", respectively). Because these letters were stamped on the end of the necks, they are sometimes mistaken for neck-profile designations, but are actually unrelated.
When it comes to neck profiles, there's no right or wrong, so play around. Remember that your initial encounter with another guitar may be brief, so don't simply go with your first impression. Keep an open mind because your opinion can change if you spend time adjusting to—or maybe even living with—a different guitar neck for a while.
[Updated 8/18/21]
Can you get more air in your sound? Here’s a good place to start.
Although tremolo was the first guitar effect, reverb was right on its heels, and ever since we’ve all been tweaking our amps and effects to achieve just the right amount. Here are a handful of stomps that give modern players the kind of control over reverberation that we crave.
Meris MercuryX Modular Reverb System Pedal
MERIS
MercuryX
A modular reverb system with pro-audio and studio-rack heritage, advanced processing, and a high-performance signal path.
Boss RV-200 Reverb Pedal
BOSS
RV-200
The RV-200 delivers inspiring reverbs and premium sound in a streamlined design. Twelve versatile reverb types provide everything from subtle spatial color to complex, dreamy textures for ambient explorations.
Universal Audio UAFX Evermore Studio Reverb Guitar Effects Pedal
Universal Audio
Evermore Studio Reverb
This pedal gives you the grainy ambient trails and mesmerizing modulations of iconic late-'70s-vintage digital hardware, in a compact, elegantly crafted stompbox.
LR Baggs Align Reverb Acoustic Reverb Pedal
L.R. Baggs
Align Series Reverb
Built from the ground up to complement the natural body dynamics and warmth of acoustic instruments, this circuit seamlessly integrates the wet and dry signals with the effect in side chain, so it never overwhelms the original signal. The result is an organic reverb that maintains the audiophile purity of the original signal with the controls set in any position.
Fishman AFX AcoustiVerb Mini Reverb Pedal
Fishman
AFX AcoustiVerb Mini Reverb
This multi-reverb pedal for acoustic guitar offers Fishman’s unique blending and voicing architecture. Three quality reverbs—hall, plate, and spring—blend in parallel with your direct sound while preserving your tone.
Gamechanger Audio Light Pedal Optical Spring Reverb Pedal
Gamechanger Audio
Light Pedal
The Light Pedal combines the best features of a classic spring reverb with an innovative infrared optical sensor system and a unique effects section.
PG's Nikos Arvanitis talks to the funk-guitar master about his musical influences, go-to gear choices, the pros of teaching, working in the studio versus the stage, and future plans for Jamiroquai.
As a youngster in the 1970s, Rob Harris was unusually fixated with music, spending hours watching bands on TV programmes. At the age of 7 and after much badgering from Rob, his father finally retrieved the guitar (an old Hofner) out of the loft space for him, and so began Rob’s lifelong musical journey.
After growing up in the Middle East from age 4 to 12, Rob and his family returned in to the UK in 1983 and he soon began studying with a great local guitar teacher named Colin Medlock. This was to continue for several years and was to shape a strong musical foundation in Rob’s guitar playing.
At the age of 14, Rob began gigging with local bands in the Cambridgeshire area and soon developed an interest in a variety of musical styles, listening to an eclectic range of artists and tirelessly researching and studying those who had played guitar on said records. This furthered the ongoing development of his musical skills, studying song craft, creating parts and hooks and writing lyrics. It was only natural to then take the step to working with producers and artists as a session guitarist.
The early 90’s was when Rob really began to flourish, recording and touring with The Pasadenas, Gary Numan, Mark Owen, Alphaville eventually joining the band Jamiroquai as a member in 1999 which continues to this day. Rob has played and co- written on the albums Funk Odyssey, Dynamite, Rock Dust Light Star and has most recently played on the band’s 2017 release Automaton and embarking on a global tour with the band in the April of the same year.
His credits also include: Beverly Knight, Kylie Minogue, Anastasia, Lighthouse Family, Don Airey (Deep Purple), Katy Perry, JP Cooper, Era, Gabriella Aplin, Will Young, Julian Perretta, Duke Dumont, Paloma Faith, Robbie Williams, Lego Batman (Soundtrack), Louisa Johnson and The Ministry of Sound’s Stripped Album, Kanye West, to name but a few.
Rob currently lives in Cambridgeshire where he records and teaches in between tour dates at his well-equipped studio. He also spends much of his time giving masterclasses and hosting educational workshops to music students and guitar enthusiasts, across the globe.
If you want to escape from the pressures of modern life, go pick up your guitar. Now. You’ll be glad you did.
As I write this, we’re a few weeks away from the election, and I’m feeling as nervous as a cat in a dog park. No matter how you’re voting, there’s a good chance you feel the same way. These are complex times.
But we have a source of respite that many do not: We play guitar. Lately, I’ve made it a point to carve out an hour or so nightly to play through some of my band’s current repertoire to keep the dust off between shows and to explore some fresh sonic options to work into songs. The practice is paying off musically, but that’s not the biggest benefit. I’ve noticed, after I shut down my amps and pedalboard, and put my guitars back on their stands, that I feel better. About everything. For that hour or so, I am simply lost in the joys and mysteries of playing guitar. Things start to reveal themselves, new ideas tumble out of my fingers, and suddenly I’m in a place where anxiety can’t get to me and my mind is largely clear. It’s a safe zone where I’m not judging myself or others, and I’m relaxed and present. It’s a place where polling numbers and attack ads, family members with difficulties, and other concerns don’t even exist. And while it may be temporary, it is also beautiful.
I’m certain many of us have the same experience when we’re playing at home or onstage. And if you’re reading this while voices in your head are nattering with worry, I suggest you immediately go plug a guitar—the one that plays like melted butter—into your favorite amp and play a little melody, or your favorite set of chord changes, or even a nice campfire chord. I’d be surprised if you don’t soon feel the sensation of tension trickling out of your spine.
This is the great gift of guitar playing and music in general: Its ability to transport us to another place—that zone of safety and delight. Under the weight of the world, it is often possible to temporarily forget guitar playing’s curative power, or be distracted from it, and that is why I am reminding you.
"This is the great gift of guitar playing and music in general: Its ability to transport us to another place—that zone of safety and delight."
For me, and I’m sure this is not just my experience, music has always been a refuge—a special thing that makes my heart fill with peace, joy, and wonder. I recall watching Johnny Cash on TV as a child, listening to his spoken stories and the tales in his songs, and feeling like I was being swept through time and space, to places and eras full of exciting people and things. It stretched my imagination and worldview, and made it seem that life’s possibilities were endless. I still cherish that feeling, and listening to, for a couple examples, Tom Waits, Pink Floyd, Merle Haggard, Lucinda Williams, Son House, Kevin Gordon, Coltrane, and the Messthetics, still delivers it. And the next step, playing music and writing songs, makes me feel like an occupant of a small corner of their universe, and that’s a place I cherish.
I’ll mention safety again, and pardon me if this gets too personal. Many of us, after surviving the pandemic and the last decade of turmoil, do not feel safe. Having grown up in a household with a physically and verbally abusive father, where a blow could come at any time without reason or warning, that’s long been an issue for me. And when the news of the latest mass shooting, for example, is fresh in my brain, I tend to map out places to hide or flee when I’m at a concert or a mall or a large public gathering. Maybe that’s just my problem, but my gut—and what I hear from others—tells me it’s not.
Oddly, one of the places I can feel safest and happiest is onstage, whether performing solo or with my band, when everything is flowing and the music is in my veins. And that’s the magic of guitar and music again. It’s given me a place to be in the world that I love and that makes me feel complete. If you get that feeling from playing and listening to music, don’t let anything get in its way. Sometimes, in these times, that can be challenging, but the first step to your personal oasis is simple: just pick up that special guitar and plug in.
The PXO was created as a live or studio tool. When we sent Phil the overdrive sample he found that it saved him in backline situations and provided him a drive that plays well with others.
The PXO is an overdrive/boost where you can select pre or post giving you variety in how you want to boost, EQ and overdrive. We have provided standard controls on the overdrive side such as Volume/Gain/Overdrive and EQ but on the boost side you have a separate Tilt EQ that allows you to EQ with simplicity. You can experiment by cascading in a pre or post situation and experiment from there. The PXO has a lush, thick feel to the bottom end and a smooth top end that begs you to dig into the note.